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Unsupervised learning

So far we have looked at models that in the machine learning
literature are called supervised learning.

The idea here is that the algorithm learns to find some pattern
in the data, whereby—at least for the training data—the
correct answer is known.

E.g. we know which countries are democratic and which are
not, but try to predict based on a set of variables.

With unsupervised learning, there is no a priori labelling of
the data.
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Dimension reduction

We can use dimension reduction techniques to get low
dimensional representations of high dimensional data, for
visualisation or analysis.

Multidimensional scaling: find a low-dimensional coordinate
system based on a distance matrix, so that in the new space,
distances between observations remain as similar as possible.

Principal component analysis: find a low-dimensional
coordinate system (dimensions) such that as much as possible
of the variance in the data is captured by the location on these
coordinates.

Factor analysis: find a latent coordinate system (factors) such
that the position on these factors can be seen as underlying
dimensions that explain the data.
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Text in high-dimensional space

Our speech data is an example of high-dimensional data that
we want to visualise using low-dimensional representations of
the data.
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Multidimensional scaling

Imagine we have a table with distances between cities and we
want to reconstruct the original map. We can use
multidimensional scaling (MDS) to do so.

Distances can be any kind of dissimilarity matrix, for example
Euclidean distances in the space defined by terms of speeches.

(Bartholomew et al., 2008, 55–58)
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MDS: implementation

To calculate distances between observations, we can use the
dist() function:

D <- dist(X)

We can then use the output in a classical MDS analysis as
follows:

cmdscale(D)

Alternative, non-metric MDS procedures exist for variables
that are not at a scale level of measurement.
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MDS: development example

increase life imr tfr gdp
Albania 1.20 69.20 30.00 2.90 659.91

Argentina 1.20 68.60 24.00 2.80 4343.04
Australia 1.10 74.70 7.00 1.90 17529.98

Austria 1.00 73.00 7.00 1.50 20561.88
Benin 3.20 45.90 86.00 7.10 398.21

Bolivia 2.40 57.70 75.00 4.80 812.19
Brazil 1.50 64.00 58.00 2.90 3219.22

Cambodia 2.80 50.10 116.00 5.30 97.39
China 1.10 66.70 44.00 2.00 341.31

Colombia 1.70 66.40 37.00 2.70 1246.87
Croatia -1.50 67.10 9.00 1.70 5400.66

Data set on 25 countries in 1997 containing measures of
growth rate, life expectancy, infant mortality, fertility, and GDP.

(Bartholomew et al., 2008, 71)



principal
components

Introduction

MDS

PCA

FA

References

MDS: development example

plot(cmdscale(dist(scale(econ25))))
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Principal component analysis

“The main aim of principal components analysis (PCA) is
to replace p metrical correlated variables by a much smaller
number of uncorrelated variables which contain most of the
information in the original set.”
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(Bartholomew et al., 2008, 117)
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PCA: development example

plot(princomp(scale(econ25))$scores)
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PCA uses the full matrix and MDS only the distances, but
when using Euclidean distances, MDS and PCA give the same
answer. (Bartholomew et al., 2008, 135)
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PCA: terminology

The underlying dimensions are called the principal
components.

The projection of each data point on the principal components
are called the scores.

The projection of each variable on the principal components are
called the loadings.

The loadings help in substantively, post hoc, interpreting the
meaning of the dimensions—but this is not really what PCA is
designed for.
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Factor analysis

In factor analysis we are looking for latent variables,
unobserved variables that are underlying the structure we
observe.

For example, we might have data on the answers of a set of
students on a range of different test questions, but in the end
most of the test scores are driven by two latent traits,
mathematical and verbal skills.

In factor analysis, the variation in the data (e.g. test scores) is
seen as a combination of variation in underlying traits (e.g.
foundational skills), variation in specific features of the
particular test, and error variation.

(van de Geer, 1967, 126–129)
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Factor analysis: development example

library(psych)

plot(fa(scale(econ25), nfactors = 2,

rotate = "none"))
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Factor analysis: orthogonal rotation

The factors define a space in which we can locate the
observations, but the axes can be freely rotated without
altering this space.
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Factor analysis: rotation

To find potential underlying traits, we tend to search for a
rotation such that some variables correlate strongly with a
particular factor (high loadings) and other variables correlate
weakly (low loadings), avoiding factors where a lot of variables
correlate somewhat.

Varimax is the most commonly used rotation algorithm if we
insist on orthogonal axes, i.e. uncorrelated factors, called
orthogonal rotation.

Oblimin is one of a list of options when we allow factors that
are correlated, called oblique rotation.
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Factor analysis: oblique rotation

The factors define a space in which we can locate the
observations, but the axes can be freely rotated without
altering this space, even when we allow for correlate axes.
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Factor analysis: development example

plot(fa(scale(econ25), nfactors = 2,

rotate = "varimax"))
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This assumes orthogonal, uncorrelated factors (using varimax).
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Factor analysis: development example

fa(scale(econ25), nfactors = 2, rotate = "none")

fa(scale(econ25), nfactors = 2, rotate = "varimax")

Loadings without rotation:

F1 F2

increase 0.84 0.43
life -0.96 0.17
imr 0.94 -0.10
tfr 0.95 0.14
gdp -0.68 0.23

After varimax rotation:

F1 F2

increase 0.37 0.87
life -0.85 -0.49
imr 0.78 0.53
tfr 0.63 0.72
gdp -0.67 -0.26
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Factor analysis: development example

plot(fa(scale(econ25), nfactors = 2,

rotate = "oblimin"))
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This allows for correlated factors (using oblimin).
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Factor analysis: terminology

The underlying dimensions are called the factors.

The projection of each data point on the factors are called the
scores.

The projection of each variable on the factors are called the
loadings.

The loadings help in substantively, post hoc, interpreting the
meaning of the factors.
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Factor analysis: Lisbon example

In a survey after the 2008 Lisbon Referendum, respondents
were asked for a number of items whether they thought this
was or was not part of the referendum proposal.

Campaign emphasis Perceptions of
NO YES treaty contents

Correct campaign campaign Factor 1 Factor 2
Loss of Irish Commissioner Yes Yes .09 .23
Ending right to decide its own cor-
porate tax

No Yes .56 .05

Conscription to a European army No Yes .63 .04
Reduction of voting strength in
Council

Yes Yes .42 .15

End of control over policy on abor-
tion

No Yes .80 -.02

Erosion of Irish neutrality Ambiguous Yes .76 .03
Improved efficiency of EU decision-
making

Yes Yes .03 .60

Strengthening Europe’s role in
world

Yes Yes -.09 .63

Improved protection of workers’
rights

Ambiguous Yes .02 .55

Strengthening role of National Par-
liaments

Yes Yes .13 .56

The Charter of Fundamental Rights Yes Yes .07 .69

(Elkink and Sinnott, 2009)
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PCA vs factor analysis

PCA Factor analysis
Models all variation Separates common and

unique variation
Summarizing method Modelling method
Not affected by number of di-
mensions extracted

Affected by number of factors
extracted

Preserves distances Preserves correlations
Exact analytical solution Approximate solution (many

methods available)
Within space of variables Transcends space of variables
No underlying assumptions Assumes multivariate nor-

mally distributed data

http://stats.stackexchange.com/questions/95038/

how-does-factor-analysis-explain-the-covariance-while-pca-explains-the-variance/

http://stats.stackexchange.com/questions/95038/how-does-factor-analysis-explain-the-covariance-while-pca-explains-the-variance/
http://stats.stackexchange.com/questions/95038/how-does-factor-analysis-explain-the-covariance-while-pca-explains-the-variance/
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Confirmatory vs exploratory factor analysis

Here we use PCA and factor analysis as dimension reduction
techniques to summarize data and find structure.

Factor analysis is also often used to either:

1 find latent variables that are expected to be there a priori,

2 or to see if there are underlying latent variables.

The latter is heavily criticised as “Tom Swift and His Electric
Factor Analysis Machine”, because without substantive
understanding of the variables and their measurement, it is
risky to put too much weight on findings in factor analysis.

(Armstrong, 1967)
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Dimension reduction choices

Find a low-dimensional representation that attempts to
preserve correlations (and model latent traits): factor analysis.

Find a low-dimensional representation that attempts to
preserve distances: multidimensional scaling or PCA.

Find a low-dimensional representation that attempts to
preserve variation: principal component analysis.

Note that the simplest form of MDS happens to be PCA (but
less simple forms are not) and FA often uses PCA as part of its
iterative algorithm.

http://stats.stackexchange.com/questions/94048/

pca-and-exploratory-factor-analysis-on-the-same-dataset-differences-and-similar/

http://stats.stackexchange.com/questions/94048/pca-and-exploratory-factor-analysis-on-the-same-dataset-differences-and-similar/
http://stats.stackexchange.com/questions/94048/pca-and-exploratory-factor-analysis-on-the-same-dataset-differences-and-similar/
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