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PERSON Class

Name Blueprint or template for user-
Age .
Job defined data.

Defines data and functionality to be
associated with each instance.

Does not yet reserve any memory
space for data.
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Object

Instance of a specific object, based
on the class definition.

Reserves specific memory space for
the data, as any other variable

type.



class Person:

def __init__(self, name, age):
self.name = name
self.age = age

def print(self):
print("%s 1s %d years old" %

—  Constractor

(self.name, self.age))

Person




class Person:
def __init__(self, name, age):
self.name = name

self.age = age

def print(self):
print("%s is %d years old" % (self.name, self.age))

john = Person("John", 42)
peter = Person("Peter", 30)

john.print()

peter.print()

print(type(john))
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Search & person.py x main.py x

& person.
« Files e person.py
1 v class Person:
& main.py 2
[ labs 3 v def __init__(self, name, age):
4 self.name = name
(3 .gitignore 5 self.age = age
6
(Y LICENSE ,
7~ def print(self):
@ person.py 8 print("%s is %d years old" % (self.name, self.age))
9
Search person.py x €@ main.py x
a in.
o Files glmaln Py
1 from person import Person
2 main.py 2
0 labs 3 john = Person("John", 42)
4 peter = Person("Peter", 30)
[ .gitignore 5
() LICENSE ° , _
7 john.print()
& person.py 8
9 peter.print()
10
11
v Tools print(type(john))
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Job
Title: str
Company Salary: float i
Company. Company

Mame: str

Sectoristr Raize()

Size:int Fire()
J

Employees:listof Job
Address: Address

Ferson
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Name:str
Age:int
Job: Job
Address: Address

Employ()
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Thinking about our
simulation, what are

Policy and the Dynamics of Poli some classes (types of
MICHAEL LAVER New York Univers) Objects) that come to

This paper proposes a model that takes the

American Political Science Review

competition into a multiparty environme mi nd ?

switch parties to increase their expectatio
shifting affiliations of voters. Different algorithm
gator” (adapt party policy to the ideal policy posifi8
that were rewarded; otherwise make random moves
position of the largest party), and “Sticker” (never changé
of parties using different methods of adaptation are explore
experiments to the dynamics of a real party system, described in g
This paper reports first steps toward endogenizing key features q

death of parties, internal party decision rules, and voter ideal poin
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