°rogramming
for Socia Object
Scientists program

Johan A. Dornschneider-Elkink

Imperative programming Declarative programming

Structured programming Functional

rogrammin
Procedural programming Prod s

Logic
programming

Object-
oriented
programming

Programming paradigms

PERSON Class

Name Blueprint or template for user-
Age .
Job defined data.

Defines data and functionality to be
associated with each instance.

Does not yet reserve any memory
space for data.

Sam

23

Carpenter

PERSON
Name
Age
Job
Frank
39
Shopkeeper

e

™,
b

Peter
42
Consultant

Nataly
31
Plumber

re
&

Patricia
27
Footballer

Sam
23
Carpenter

Frank
39
Shopkeeper

Peter
42
Consultant

Nataly
31
Plumber

Patricia
27
Footballer

Object

Instance of a specific object, based
on the class definition.

Reserves specific memory space for
the data, as any other variable

type.

class Person:

def __init__(self, name, age):
self.name = name
self.age = age

def print(self):
print("%s 1s %d years old" %

— Constractor

(self.name, self.age))

Person

class Person:
def __init__(self, name, age):
self.name = name

self.age = age

def print(self):
print("%s is %d years old" % (self.name, self.age))

john = Person("John", 42)
peter = Person("Peter", 30)

john.print()

peter.print()

print(type(john))

\

J

- peﬁ(/}(} a class

- ga//@az melhods

Person

— Creatiing objecte

Search & person.py x main.py x

& person.
« Files e person.py
1 v class Person:
& main.py 2
[labs 3 v def __init__(self, name, age):
4 self.name = name
(3 .gitignore 5 self.age = age
6
(Y LICENSE ,
7~ def print(self):
@ person.py 8 print("%s is %d years old" % (self.name, self.age))
9
Search person.py x €@ main.py x
a in.
o Files glmaln Py
1 from person import Person
2 main.py 2
0 labs 3 john = Person("John", 42)
4 peter = Person("Peter", 30)
[.gitignore 5
() LICENSE ° , _
7 john.print()
& person.py 8
9 peter.print()
10
11
v Tools print(type(john))

-
N

)

Job
Title: str
Company Salary: float i
Company. Company

Mame: str

Sectoristr Raize()

Size:int Fire()
J

Employees:listof Job
Address: Address

Ferson

\L\

Name:str
Age:int
Job: Job
Address: Address

Employ()

S

Address

Hire(Person)

h*iei_//a

City:str
County: str
Eircode: str

CREAT

EC WITH YUML

Thinking about our
simulation, what are

Policy and the Dynamics of Poli some classes (types of
MICHAEL LAVER New York Univers) Objects) that come to

This paper proposes a model that takes the

American Political Science Review

competition into a multiparty environme mi nd ?

switch parties to increase their expectatio
shifting affiliations of voters. Different algorithm
gator” (adapt party policy to the ideal policy posifi8
that were rewarded; otherwise make random moves
position of the largest party), and “Sticker” (never changé
of parties using different methods of adaptation are explore
experiments to the dynamics of a real party system, described in g
This paper reports first steps toward endogenizing key features q

death of parties, internal party decision rules, and voter ideal poin

LS >

a series of
fime series.
ng the birth and

	Slide 1: Programming for Social Scientists
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

