°rogramming

for Socia Class i
Scientists

Johan A. Dornschneider-Elkink

PERSON Class

Name Blueprint or template for user-
Age .
Job defined data.

Defines data and functionality to be
associated with each instance.

Does not yet reserve any memory
space for data.

Sam

23,

Carpenter

PERSON
Name
Age
Job
Frank
39
Shopkeeper

.,

™,
b

Peter
42
Consultant

Nataly
31
Plumber

v
i

Patricia
27
Footballer

Sam
23
Carpenter

Frank
39
Shopkeeper

Peter
42

Consultant

Nataly
31
Plumber

Patricia
27
Footballer

Object

Instance of a specific object, based
on the class definition.

Reserves specific memory space for
the data, as any other variable

type.

Object-Oriented Program

Key principles

Encapsulation (bundling data & methods)
Abstraction (hiding details)
Polymorphism (one interface, multiple
implementations)

Inheritance (code reuse & relationships)

__—

Motivation

Organizes code efficiently
Makes maintenance easier
Allows for scalable and modular
design

What is inheritance?

/\
Definition

Inheritance allows a class (child) to inherit

attributes and methods from another class
(parent).

Motivation

Code reuse (avoid rewriting existing
logic)

Hierarchical relationships (e.g.,
Vehicle - Car & Truck)

Improves maintainability

What is inheritance?

Definition

Inheritance allows a class (child) to inherit
attributes and methods from another class
(parent).

Vehicle

location: Location

move()

Car

Bicycle

Boat

.

Location

x: int
y:int

Inheritance in Python

ParentClass

(self, name):

self.name = name

(self):
print(

childcClass

CREATED WITH YUML

obj = ChildClass()

obj.greet() # Inherits greet() from ParentClass

Overriding methods P

Parent

show_message()

A P

(self): # Overriding

print(child

show_message()

obj = Child()

obj.show_message() # Calls the overridden method
CREATED WITH YUML

Using super()

show_message()

(self):

super().show_message() # Calls Parent's method child
print()
show_message()

obj = Child()
CREATED WITH YUML
obj.show message()

Using super() in the constructor

(self, name):

self.name = name

):
(self, name, breed):
super(). init (name) # Call parent’'s init

self.breed = breed

dog = Dog(,)
print(dog.name) # Inherited from Animal

print(dog.breed) # Defined in Dog

Example in Python

math.cos(.)
math.sin(.)

Example in Python @
()

():

(). ()

(self):
()

("Out of fuell!")

Multi-level inheritance

(self,):

(f"Vehicle moved { } meters")

():

()

-. (100)
Output: Vehicle moved 100 meters

class Party:

def init (self, name, strategqgy):

self.name = name

self.strategy = strategy =

self.voters = [] Strateqy
self.location = Location ()

def update (self): update()

self.strategy.update (self)

StickerStrateqy Aggregatorstrategy

HuntersStrateqgy

Predatorstrateqy

—

CREATED WITH YUML

	Slide 1: Programming for Social Scientists
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Object-Oriented Programming
	Slide 6: What is inheritance?
	Slide 7: What is inheritance?
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

