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Hat matrix

ŷ = Xβ̂OLS

= X(X′X)−1X′y

= Hy

var(ŷ) = σ2H

var(e) = σ2(I−H)

x1

x2

e=(I−H)y

ŷ = Hy

y

H is called the hat matrix (it “puts a hat on y”), or
sometimes prediction matrix P.
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Leverage

The elements on the diagonal of H are called the leverage of
each case — the higher the leverage, the more this particular
case contributed to the predicted dependent variable.

For the remainder we will use:

hi = Hii = xi (X′X)−1x′i ,

thus hi represents the leverage of observation i (xi is a row
vector of the independent variables for case i).

Note that 0 ≤ hi ≤ 1 and
∑n

i=1 hi = k .

A high hi means that xi is far from the mean of X.
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Outliers

An outlier is a point on the regression line where the residual is
large.

To account for the potential variables in the sampling variances
of the residuals, we calculate externally studentized residuals
(or studentized deleted residuals), where a large absolute value
indicates an outlier. A test could be based on the fact that in a
model without outliers, they should follow a t(n − k)
distribution.

(Kutner et al., 2005, 390–398)

A point with high leverage is located far from the other
points. A high leverage point that strongly influences the
regression line is called an influential point.
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Studentized residuals

• The internally studentized residual is:

ri =
ei√

s2(1− hi )

• The deleted residual is di = yi − ŷi(−i), whereby ŷi(−i) is
the predicted value of yi based on a regression with the
ith observation omitted.

• The externally studentized residual is:

ti =
di√

s2
d(1− hi(−i))

=
ei√

s2
(−i)(1− hi )

= ei

√
n − k − 1

s2(1− hi )− e2
i

,

with s2
(−i) representing s2 for the model without

observation i .
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Outlier, low leverage, low influence
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High leverage, low influence
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Cook’s Distance

Di ≡
∑n

j=1(ŷj − ŷj(−i))2

ks2
=

(β̂OLS
(−i) − β̂

OLS)′X′X(β̂OLS
(−i) − β̂

OLS)

ks2

=

(
ei

s
√

1− hi

)2 hi
k(1− hi )

=
t2
i

k

var(ŷi )

var(ei )

∼ F (k , n − k)

The F -test here refers to whether β̂OLS would be significantly
different if observation i were to be removed (H0 : β = β(−i))
(Cook, 1979, 169).
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Cook’s Distance

Di =
t2
i

k

var(ŷi )

var(ei )

“t2
i is a measure of the degree to which the ith observation can

be considered as an outlier from the assumed model.”

“The ratios var(ŷi )
var(ei )

measure the relative sensitivity of the

estimate, β̂OLS , to potential outlying values at each data
point.”

(Cook, 1977, 16)
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Cook’s Distance plot
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Cook’s Distance vs leverage
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What to do with outliers?

Options:

1 Ignore the problem

2 Investigate why the data are outliers — what makes them
unusual?

3 Consider respecifying the model, either by tranforming a
variable or by including an additional variable (but beware
of overfitting)

4 Consider a variant of “robust regression” that
downweights outliers
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Diagnosing problems in R

• A very easy set of diagnostic plots can be accessed by
plotting a lm object, using plot.lm()

• This produces, in order:

1 residuals against fitted values
2 Normal Q-Q plot
3 scale-location plot of

√
|ei | against fitted values

4 Cook’s distances versus row labels
5 residuals against leverages
6 Cook’s distances against leverage/(1-leverage)

• Note that by default, plot.lm() only gives you 1,2,3,5
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Collinearity

When some variables are linear combinations of others then we
have exact (or perfect) collinearity, and there is no unique least
squares estimate of β. (X′X)−1 will not exist if r(X) < k .

When X variables are highly correlated, we have
multicollinearity.

Detecting multicollinearity:

• look at correlation matrix of predictors for pairwise
correlations

• regress xj on X(−j) to produce R2
j , and look for high

values (close to 1.0)

• examine eigenvalues of X′X
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Multicollinearity

The extent to which multicollinearity is a problem is debatable.

The issue is comparable to that of sample size: if n is too
small, we have difficulty picking up effects even if they really
exist; the same holds for variables that are highly multicollinear,
making it difficult to separate their effects on y.



diagnostics

Outline

Outliers

Multicollinearity

Measurement
error

Heterosked.

Solutions

Diagnostics

Autocorrelation

Diagnostics

Appendix

References

Multicollinearity

However, some problems with high multicollinearity:

• Small changes in data can lead to large changes in
estimates

• High standard errors but joint significance

• Coefficients may have “wrong” sign or implausible
magnitudes

(Greene, 2002, 57)
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Multicollinearity
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Variance of β̂OLS

var(β̂OLS
k ) =

σ2

(1− R2
k )
∑n

i (xik − x̄k)2

• σ2: all else equal, the better the fit, the lower the variance

• (1− R2
k ): all else equal, the lower the R2 from regressing

the kth independent variable on all other independent
variables, the lower the variance

•
∑n

i (xik − x̄k)2: all else equal, the more variation in x , the
lower the variance

(Greene, 2002, 57)
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Variance Inflation Factor

var(β̂OLS
k ) =

σ2

(1− R2
k )
∑n

i (xik − x̄k)2

VIFk =
1

1− R2
k

,

thus VIFk shows the increase in the var(β̂OLS
k ) due to the

variable being collinear with other independent variables.

library(faraway)

vif(lm(...))
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Multicollinearity: solutions

• Check for coding or logical mistakes (esp. in cases of
perfect multicollinearity)

• Increase n

• Remove one of the collinear variables (apparently not
adding much)

• Combine multiple variables in indices or underlying
dimensions

• Formalise the relationship



diagnostics

Outline

Outliers

Multicollinearity

Measurement
error

Heterosked.

Solutions

Diagnostics

Autocorrelation

Diagnostics

Appendix

References

Effects of measurement error

Random error − independent variable
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Measurement error

yi = β0 + β1xi + εi

Assume there is measurement error in x , such that
x∗i = xi + vi , vi ∼ N(0, ω).

yi = β0 + β1(xi − vi ) + εi

= β0 + β1xi + (εi − β1vi )

= β0 + β1xi + ui ,

therefore, if β1 6= 0, x∗i will be correlated with the error term ui .

var(ui ) = σ2 + β2
1v

2
i ,

so variances will be inflated.

E (ui |xi ) = E (ui |vi ) = −β1vi ,

thus ui and xi will be correlated.

β̂OLS will be biased and inconsistent. (Davidson and MacKinnon, 1999, 311)
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Measurement error: bias

E (ε) 6= 0

E (β̂OLS |X) = (X′X)−1X′y

= (X′X)−1X′(Xβ + ε)

= β + (X′X)−1X′ε

Since E (ui |xi ) = −β1vi , this means β1 will be underestimated
if β1 > 0.

(Greene, 2002, 76)

Instrumental variables is one method of dealing with
measurement error in the independent variables (later in
course).
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Homoscedasticity
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Heteroscedasticity
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Heteroscedasticity

Regression disturbances whose variances are not constant
across observations are heteroscedastic.

Under heteroscedasticity, the OLS estimators remain unbiased
and consistent, but are no longer BLUE or asymptotically
efficient.

(Thomas, 1985, 94)
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Causes of heteroscedasicity

• More variation for larger sizes (e.g. profits of firms varies
more for larger firms)

• More variation across different groups in the sample

• Learning effects in time-series

• Variation in data collection quality (e.g. historical data)

• Turbulence after shocks in time-series (e.g. financial
markets)

• Omitted variable

• Wrong functional form

• Aggregation with varying sizes of populations

• etc.
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Heteroscedasticity

Since OLS is no longer BLUE or asymptotically efficient,

• other linear unbiased estimators exist which have smaller
sampling variances;

• other consistent estimators exist which collapse more
quickly to the true values as n increases;

• we can no longer trust hypothesis tests, because
var(β̂OLS) is biased.

• cov(X2
i , σ

2
i ) > 0, then var(β̂OLS) is underestimated

• cov(X2
i , σ

2
i ) = 0, then no bias in var(β̂OLS)

• cov(X2
i , σ

2
i ) < 0, then var(β̂OLS) is overestimated

(inefficient)

(Thomas 1985, 94–95; Judge et al. 1985, 422)
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Heteroscedasticity

Normally we assume:

E (εε′|X) = σ2I =


σ2 0 ... 0
0 σ2 ... 0
...

...
. . .

...
0 0 ... σ2


For the heteroscedastic model we have:

E (εε′|X) = Ω =


ω1 0 ... 0
0 ω2 ... 0
...

...
. . .

...
0 0 ... ωn

 =


σ2

1 0 ... 0
0 σ2

2 ... 0
...

...
. . .

...
0 0 ... σ2

n


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Deriving var(β̂OLS)

var(β̂OLS) = E [(β̂OLS − β)(β̂OLS − β)′]

= E [((X′X)−1X′ε)((X′X)−1X′ε)′]

= E [(X′X)−1X′εε′X(X′X)−1]

= (X′X)−1X′E [εε′]X(X′X)−1

= (X′X)−1X′σ2IX(X′X)−1

= σ2(X′X)−1X′X(X′X)−1

= σ2(X′X)−1
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Deriving var(β̂OLS) under heteroscedasticity

var(β̂OLS) = E [(β̂OLS − β)(β̂OLS − β)′]

= E [((X′X)−1X′ε)((X′X)−1X′ε)′]

= E [(X′X)−1X′εε′X(X′X)−1]

= (X′X)−1X′E [εε′]X(X′X)−1

= (X′X)−1X′ΩX(X′X)−1,

which cannot be simplified further and requires knowledge of Ω
to estimate.
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Efficiency

Because observations with low variance will contain more
information about the parameters than observations with high
variance, an estimator which weighs all observations equally,
like OLS, will not be the most efficient.

(Davidson and MacKinnon, 1999, 197)
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Generalized Least Squares

More in general, if var(εi ) = σ2λi , with λi being some function
of Xi , then we can always transform our model by dividing all
variables by

√
λi .

This is referred to as generalized least squares (GLS). (It is a
generalization, because of λi = 1, we have OLS.)

With GLS, observations with lower σ2 are weighted more
heavily.

(Thomas 1985, 98; Judge et al. 1985, 421
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Estimated Generalized Least Squares

To perform GLS estimation, σ2
i has to be known. In some

cases we can estimate σ2
i , in which case we talk of estimated

generalized least squares (EGLS).

To estimate a model with minimal restrictions on σ2
i , we are

estimating a model with n + k unknown parameters - i.e. the
number of parameters to be estimated increases as n increases
and the estimator is by definition inconsistent.

(Judge et al., 1985, 423)
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Estimated Generalized Least Squares

Special cases where estimation might be possible:

• σ2 constant within subgroups

• σ2 = (Zα)2, i.e. σ is linear function of exogenous
variables

• σ2 = Zα, i.e. σ2 is linear function of exogenous variables

• σ2 = σ2(Xβ)p, i.e. var(y) is proportional to a power of
its expectation

• σ2 = eZα, “multiplicative heteroscedasticity”

• et = vt

√
α0 + α1e2

t−1, “autoregressive conditional

heteroscedasticity” (ARCH)

See Judge et al. (1985, 424ff) for an overview of estimators.
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White’s HCCM

When the form of the heteroscedasticity is unknown, we can
get consistent estimates of var(β̂OLS) using a
heteroscedasticity consistent covariance matrix (HCCM).

var(β̂OLS) = (X′X)−1X′ΩX(X′X)−1

HCCM: estimate ω̂ii = (ei − 0)2 = e2
i , so that we have variance

estimator

var(β̂OLS) = (X′X)−1X′diag(e2
i )X(X′X)−1

Since there are several variations, this is called HC0 in the
literature.

(Long and Ervin, 2000)
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Residuals vs errors

Note that:

hii = xi (X′X)−1x′i

var(ei ) = σ2(1− hii ) 6= σ2,

therefore var(ei ) underestimates σ2 and even when the errors
(ε) are homoscedastic, the residuals (e) are not.

So e2
i , used in White’s HC0, is, even though consistent, a

biased estimator. The small sample properties turn out not to
be very good.

(Long and Ervin, 2000)
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HCCM variations

HC0 = (X′X)−1X′diag(e2
i )X(X′X)−1

HC1 =
n

n − k
(X′X)−1X′diag(e2

i )X(X′X)−1 =
n

n − k
HC0

HC2 = (X′X)−1X′diag

(
e2
i

1− hii

)
X(X′X)−1

HC3 = (X′X)−1X′diag

(
e2
i

(1− hii )2

)
X(X′X)−1

Based on Monte Carlo analyses, HC3 is best in small samples.

(Long and Ervin, 2000)
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White’s HCCM in R

library(car)

m <- lm(...)

summary(m)

vcov <- hccm(m, type="hc3")

sqrt(diag(vcov))

(See notes for “manual” version.)
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Bootstrap

Another solution for dealing with heteroscedasticity is to
bootstrap to acquire standard errors.

se <- NULL

for (i in 1:1000) {

sel <- sample(1:n, n, TRUE)

mbs <- lm(y ~ x1 + x2, data=data[sel,])

se <- rbind(se, sqrt(diag(vcov(mbs))))

}

colMeans(se)
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Residual plots: heteroscedasticity

To detect heteroscedasticity (unequal variances), it is useful to
plot:

• Residuals against fitted values

• Residuals against dependent variable

• Residuals against independent variable(s)

Usually, the first one is sufficient to detect heteroscedasticity,
and can simply be found by:

m <- lm(y ~ x)

plot(m)
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Residual plots: heteroscedasticity

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

0 2 4 6 8

5
10

15
20

25
30

35

x

y

m <- lm(y ~ x)



diagnostics

Outline

Outliers

Multicollinearity

Measurement
error

Heterosked.

Solutions

Diagnostics

Autocorrelation

Diagnostics

Appendix

References

Residual plots: heteroscedasticity
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Residual plots: heteroscedasticity
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Residual plots: heteroscedasticity
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Residual plots: homoscedasticity
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Residual plots: homoscedasticity
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Residual plots: homoscedasticity
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Residual plots: homoscedasticity

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

0 2 4 6

−
2

−
1

0
1

2

x

re
si

du
al

s(
m

)

plot(residuals(m) ~ x)



diagnostics

Outline

Outliers

Multicollinearity

Measurement
error

Heterosked.

Solutions

Diagnostics

Autocorrelation

Diagnostics

Appendix

References

Residual plots: heteroscedasticity
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Residual plots: heteroscedasticity
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Residual plots: heteroscedasticity
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Residual plots: heteroscedasticity
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Known groups

One way of testing for heteroscedasticity is if you expect that
the variances might differ between two groups, is to run two
separate regressions, for the two groups:

SSR1/(n1 − k)

SSR2/(n2 − k)
∼ F (n1 − k, n2 − k)

H0 : σ2
1 = σ2

2

(Wallace and Silver, 1988, 267)
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Breusch-Pagan test

σ2
i = f (Zα)

α =
[
α0 α∗

]′
H0 : α∗ = 0

H1 : α∗ 6= 0

with f (Zα) being any function of Zα that does not depend on
t. So this includes scenarios where σ2

i = (Zα)2, or σi = Zα, or
σi = eZα. If Z contains dummies for groups, it also includes
heteroscedasticity due to different variances across subgroups.

Assumes e2
i ∼ N(0, σ2

i )

(Judge et al., 1985, 446)
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Breusch-Pagan test

η =
q′Z(Z′Z)−1Z′q

2σ̂4

∼ χ2(s − 1) asymptotically,

where

qi = e2
i − σ̂2

σ̂2 =
1

n
e′e

and Zn×s a matrix of exogenous variables.

bptest(lm(...), studentize=F)
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Breusch-Pagan test

With more than one independent variable, an alternative
approach is to look at an auxiliary regression:

e2
i = γ0 + γ1ŷ

2
i + vi

If the model is homoscedastic and the variance is unrelated to
ŷ, then H0 : γ1 = 0. For this regression, nR2 ∼ χ2(1).

summary(lm(residuals(m)^2 ~ fitted(m)))$r.sq * n

(Thomas 1985, 96-97)
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Breusch-Pagan test

library(lmtest)

m <- lm(y ~ x)

bptest(m)

bptest(m, ~ z1 + z2)

By default, R assumes Z = X.
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Goldfeld-Quandt test

To run a Goldfeld-Quandt test:

1 Omit r central observations from the data

2 Run two separate regressions, one for the first (n − r)/2
observations and one for the last

3 Calculate R = SSR1/SSR2

4 Perform test based on
R ∼ F ( 1

2 (n − r − 2k), 1
2 (n − r − 2k)).

(Judge et al., 1985, 449)

library(lmtest)

gqtest(m, n-40)
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Goldfeld-Quandt test

To run a Goldfeld-Quandt test:

1 Omit r central observations from the data

2 Run two separate regressions, one for the first (n − r)/2
observations and one for the last

3 Calculate R = SSR1/SSR2

4 Perform test based on
R ∼ F ( 1

2 (n − r − 2k), 1
2 (n − r − 2k)).

(Judge et al., 1985, 449)

library(lmtest)

gqtest(m, n-40)
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White’s test

One solution for dealing with heteroscedasticity is calculating
White’s heteroscedasticity-corrected standard errors. The
reasoning behind the White test is very straightforward: if
there is homoscedasticity, the corrected standard errors should
not be significantly different from the normal ones.
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White’s test

1 Regress e2
i on xi , all the variables in xi squared, and all

cross-products of xi ; e.g. if

yi = β0 + β1xi1 + β2xi2 + εi

then run regression

e2
i = γ0 + γ1xi1 + γ2xi2 + γ3x

2
i1 + γ4x

2
i2 + γ5xi1xi2 + vi

and calculate R2;

2 Perform test on basis of nR2 ∼ χ2(p − 1), whereby p is
the number of regressors in the auxiliary regression (6 in
the example).

(Greene, 2003, 222)
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White’s test in R

m <- lm(y ~ x1 + x2)

bptest(m, ~ x1 * x2 + I(x1^2) + I(x2^2))

I.e. there does not appear to be an implementation of White’s
test in R, but it is equivalent to the Breusch-Pagan test with
the independent variables as discussed.
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Heteroscedasticity tests

In general,

• many of these tests require some idea about the shape of
the heteroscedasticity;

• many of these tests have weak power, depending on the
type of heteroscedasticity;

• if there is good reason to suspect heteroscedasticity, it is
generally better to just use some robust estimation rather
than test first — the tests are not reliable enough.
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Notation: lagged variables

Instead of yi to indicate each of n observations, we will use yt
to refer to each of T observations on a time-series.

yt−1 refers to the lagged value, i.e. the value of variable y at
time t − 1, the observation just one time period before time t.

A lag can have any length k (k > 0), yt−k .
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Notation: first differences

The difference between yt and yt−1, or the change in variable y
at time t, is called the first difference, ∆yt = yt − yt−1.

Again, differences can have different lag lengths:
∆yt−k = yt−k − yt−k−1.

Note that this means ∆yt−k 6= yt − yt−k , which some other
authors might use instead.
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The problem

Ignoring this autocorrelation leads to:

• β̂OLS unbiased but inefficient (as long as E (ε|X) = 0)

• V (β̂OLS) may be an under- or overestimate - the F - and
t-tests cannot be trusted. If the autocorrelation is
positive, V (β̂OLS) will be an underestimate.

• The residual variance is likely to be underestimated and
R2 overestimated.

• Risk of spurious regressions
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Spurious regressions

When two variables are uncorrelated, but nonstationary, they often

lead to highly significant estimates of their correlation in “naive”

linear regression. Assume:

yt = yt−1 + ε1,t

xt = xt−1 + ε2,t .

Then OLS estimation of:

yt = α + βxt + εt

will lead to a significant t-test on β.
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Spurious regression

0 20 40 60 80 100

0
5

10
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Time

S
am

pl
e 

da
ta

lm(formula = y ~ x)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.9646 0.3626 -2.660 0.00911 **

x -0.9207 0.1002 -9.185 6.54e-15 ***

Residual standard error: 3.021 on 99 degrees of freedom

Multiple R-Squared: 0.4601, Adjusted R-squared: 0.4547

F-statistic: 84.37 on 1 and 99 DF, p-value: 6.544e-15
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Residual plots: no autocorrelation
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Residual plots: no autocorrelation
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T <- length(y)

plot(residuals(m)[-1] ~ residuals(m)[-T])
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Residual plots: autocorrelation
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Residual plots: autocorrelation
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Durbin-Watson

d =

∑T
t=2(et − et−1)2∑T

t=1 e
2
t

If ρ = cor(εt , εt−1) and ρ̂ = cor(et , et−1), then d ≈ 2(1− ρ̂).
Thus, if d is close to 0 or 4, there is high first-order serial
autocorrelation.

Note that E [d ] ≈ 2 + 2(k−1)
n−k , thus biased.
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Durbin-Watson

In matrix algebra, it could be written as:

d =
ε′MAMε

ε′Mε
M = I− X(X′X)−1X′,

whereby

A =



1 −1 0 0 · · · 0 0
−1 2 −1 0 · · · 0 0
0 −1 2 −1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 2 −1
0 0 0 0 · · · −1 1


The sampling distribution thus depends on X.
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Durbin-Watson

When the probability distribution of d is not exactly known, we
can use threshold values. Given T and k , boundary values dL
and dU have been tabulated.

E.g., if T = 50, k = 6, α = .05 then dL = 1.335 and
dU = 1.771, so we reject H0 : ρ > 0 if d < dL and we do not
reject if d > dU , but in between we are undecided.

These threshold values are approximations and, depending on
the speed at which regressors change, can be more or less
appropriate.
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Durbin-Watson

library(lmtest)

dwtest(model)

• Somewhat “old-fashioned” test, requiring special table.

• Assumes normally distributed errors.

• Model must include intercept.

• Requires X to be non-stochastic.

• Only tests for presence of AR(1) process.



diagnostics

Outline

Outliers

Multicollinearity

Measurement
error

Heterosked.

Solutions

Diagnostics

Autocorrelation

Diagnostics

Appendix

References

Durbin’s h test

The Durbin-Watson statistics cannot be used when there is a
lagged dependent variable in the model. You should, with such
variable, always test for remaining autocorrelation, however.
One possible test is Durbin’s h-test.

h = (1− 1

2
d)

√
T

1− T · V (β̂yt−1)

a∼ N(0, 1).



diagnostics

Outline

Outliers

Multicollinearity

Measurement
error

Heterosked.

Solutions

Diagnostics

Autocorrelation

Diagnostics

Appendix

References

Breusch-Godfrey LM test

A more powerful test, which can handle higher order
autoregressions, is the Breusch-Godfrey LM test.

1 Estimate OLS

2 Regress e on X and lagged values of e
(et−1, et−2, · · · , et−k)

3 (T − k)R2 a∼ χ2(k)

library(lmtest)

bgtest(model, order = 3)

This assumes normally distributed errors. A slightly more
general Gauss-Newton regression would not make this
assumption.
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Gauss-Newton regression

Assume an AR(1) process: yt = x′tβ + ut , ut = ρεt−1 + εt .

In this case, we can simply first regress y on X, and then use
the residuals from this regression (û) to regress û on X and ũ,
whereby ũ1 = 0 and ũt = ût−1 ∀ t > 1:

û = Xβ̃ + ũρ̃+ ε̃

The test can easily be extended by including multiple lags and
performing an F -test on all ρ̃’s.

The test is also valid for testing MA(q) or ARMA(p,q)
processes.

(Davidson and MacKinnon, 1993, 357–360)
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Gauss-Newton regression

m <- lm(y ~ x1 + x2)

T <- dim(m$model)[1]

u <- residuals(m)

u.tilde <- c(0, u[-T])

summary(lm(u ~ x1 + x2 + u.tilde))

and then check the t-test for the ũ variable.
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Simultaneity

In many scenarios, the causal relationship between y and x
might be in both directions.

E.g. more economically developed countries are more likely to
be democratic and democracies are likely to perform better
economically.
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Simultaneity

Assuming reverse causality:

yi = α1 + β1xi + ui

xi = α2 + β2yi + vi

xi = α2 + β2(α1 + β1xi + ui ) + vi

xi − β2β1xi = (α2 + β2α1) + β2ui + vi

xi =
α2 + β2α1

1− β1β2
+

β2

1− β1β2
ui +

1

1− β1β2
vi ,

thus xi and ui will be correlated.
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Simultaneity

You can model a set of simultaneous equations such as this,
but if you want to estimate just one of the equations,
instrumental variable estimation is an option.
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Heteroscedasticity: aggregation example

Imagine we have the following model:

yij = β0 + β1xij + εij ,

whereby i indicates the individual, and j the region of this
individual, with nj individuals per region.

Say we only have regional level data, ȳj = 1
nj

∑nj
i yij and

x̄j = 1
nj

∑nj
i xij :

ȳj = β0 + β1x̄j + ε̄j ,

where ε̄j = 1
nj

∑nj
i εij .

(Thomas, 1985, ∼98)
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Heteroscedasticity: aggregation example

ȳj = β0 + β1x̄j + ε̄j

E (ε̄j) = 0

E (ε̄2
j ) =

1

n2
j

E (

nj∑
i

εij) =
nj
n2
j

σ2 =
1

nj
σ2

Therefore, var(ε̄j) depends on nj and thus varies across cases.

(Judge et al., 1985, 419–420)
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Heteroscedasticity: aggregation example

ȳj = β0 + β1x̄j + ε̄j

In this case the fix is actually easy: since var(εj) = σ2/nj ,
var(
√
njεj) = σ2, so the heteroscedasticity can be avoided by

transforming the variables:

√
nj ȳj = β0

√
nj + β1

√
nj x̄j + ε∗j

(Thomas, 1985, ∼98)
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Heteroscedasticity: solution

When the type of heteroscedasticity is known, we can often
transform the data. An example is the multiplication with

√
nj

of each term in the equation for the group means regression.
Another example: if var(εi ) = σ2x2

i1, then var(εi/xi1) = σ2, so:

yi = β0 + β1xi1 + β2xi2 + εi
yi
xi1

= β0
1

xi1
+ β1

xi1
xi1

+ β2
xi2
xi1

+
εi
xi1

y∗i = β1 + β0x
∗
i1 + β1x

∗
i2 + ε∗i

(note the intercepts interpretation)

(Thomas, 1985, 98)
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Harrison-McCabe test

For the above tests we always run several regressions, because
even if errors are uncorrelated, residuals are not independent. If
residuals are not independent, a ratio of subsets of these
residuals do not have an F -distribution, while if we run
separate regressions, the residuals will be independent (if the
errors are) and such a ratio will have an F -distribution.

Harrison and McCabe (1979) suggest that such a ratio of
subsets of the residuals do have a β-distribution, however.
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Harrison-McCabe test
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