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Preliminaries

Ordinary least squares and its variations (GLS, WLS, 2SLS,
etc.) is very flexible and applicable in many circumstances, but
for some models (e.g. limited dependent variable models) we
need more flexible estimation procedures.

The most prominent alternative estimators are maximum
likelihood (ML) and Bayesian estimators. This lecture is
about the former.
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Likelihood: intuition

Dice example.

Imagine a dice is thrown with unknown number of sides k. We know after throwing the dice that the
outcome is 5. How likely is this outcome if k = 0? And k = 1? Continue until k = 10. Plot of this is the
likelihood function.
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Likelihood

“Likelihood is the hypothetical probability that an event that
has already occurred would yield a specific outcome. The
concept differs from that of a probability in that a probability
refers to the occurrence of future events, while a likelihood
refers to past events with known outcomes.”

(Wolfram Mathworld)
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Preliminaries

Looking first at just univariate models, we can express the
model as the probability density function (PDF) f (y,θ),
where y is the dependent variable, θ the set of parameters, and
f (·) expresses the model specification.

ML is purely parametric - we need to make strong
assumptions about the shape of f (·) before we can estimate θ.
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Likelihood

Given θ, f (·,θ) is the PDF of y.

Given y, f (y, ·) cannot be interpreted as a PDF and is instead
called the likelihood function.

θ̂ML is the θ that maximizes this likelihood function.

(Davidson and MacKinnon, 2004, 393–396)
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(Log)likelihood function

Generally, observations are assumed to be independent, in
which case the joint density of the entire sample is the product
of the densities of the individual observations.

f (y,θ) =
n∏

i=1

f (yi ,θ)

It is easier to work with the log of this function, because sums
are easier to deal with than products and the logarithmic
transformation is monotonic:

`(y,θ) ≡ log f (y,θ) =
n∑

i=1

log fi (yi ,θ) =
n∑

i=1

`i (yi ,θ)

(Davidson and MacKinnon, 2004, 393–396)
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Example: exponential distribution

For example, take the PDF of y to be

f (yi , θ) = θe−θyi yi > 0, θ > 0

This distribution is useful
when modeling something
which is by definition positive.
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(Davidson and MacKinnon, 2004, 393–396)
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Example: exponential distribution

Deriving the loglikelihood function:

f (y, θ) =
n∏

i=1

f (yi , θ) =
n∏

i=1

θe−θyi

`(y, θ) =
n∑

i=1

log f (yi , θ) =
n∑

i=1

log(θe−θyi )

=
n∑

i=1

(log θ − θyi ) = n log θ − θ
n∑

i=1

yi

(Davidson and MacKinnon, 2004, 393–396)
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Example: exponential distribution

To find the maximum, we take the derivative and set this equal
to zero:

`(y, θ) = n log θ − θ
n∑

i=1

yi

d(n log θ − θ
∑n

i=1 yi )

dθ
=

n

θ
−

n∑
i=1

yi

n

θ̂ML
−

n∑
i=1

yi = 0

θ̂ML =
n∑n
i=1 yi

(Davidson and MacKinnon, 2004, 393–396)



maximum
likelihood

Outline

Likelihoods

Linear model

Score and
Hessian
matrices

Asymptotics

Standard tests

References

Outline

1 Likelihoods

2 Linear model

3 Score and Hessian matrices

4 Asymptotics

5 Standard tests



maximum
likelihood

Outline

Likelihoods

Linear model

Score and
Hessian
matrices

Asymptotics

Standard tests

References

Linear model

Model:
y = Xβ + ε, ε ∼ N(0, σ2I)

We assume ε to be independently distributed and therefore,
conditional on X, y is assumed to be.

fi (yi ,β, σ
2) =

1√
2πσ2

e−
(yi−Xiβ)2

2σ2

(Davidson and MacKinnon, 2004, 396–398)
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Linear model: loglikelihood function

f (y,β, σ2) =
n∏

i=1

fi (yi ,β, σ
2) =

n∏
i=1

1√
2πσ2

e−
(yi−Xiβ)2

2σ2

`(y,β, σ2) =
n∑

i=1

log fi (yi ,β, σ
2) =

n∑
i=1

log

(
1√

2πσ2
e−

(yi−Xiβ)2

2σ2

)

=
n∑

i=1

(−1

2
log σ2 − 1

2
log 2π − 1

2σ2
(yi − Xiβ)2)

= −n

2
log σ2 − n

2
log 2π − 1

2σ2

n∑
i=1

(yi − Xiβ)2

= −n

2
log σ2 − n

2
log 2π − 1

2σ2
(y − Xβ)′(y − Xβ)

(Davidson and MacKinnon, 2004, 396–398)
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Linear model: loglikelihoodfunction

To “zoom in” on one part of this function:

log
1√

2πσ2
= log

1

σ
√

2π

= log 1− log(σ
√

2π)

= 0− (log σ + log
√

2π)

= −1

2
log σ2 − 1

2
log 2π, using

log σ =
1

2
log σ2
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Linear model: loglikelihood function

f (y,β, σ2) =
n∏

i=1

fi (yi ,β, σ
2) =

n∏
i=1

1√
2πσ2

e−
(yi−Xiβ)2

2σ2

`(y,β, σ2) =
n∑

i=1

log fi (yi ,β, σ
2) =

n∑
i=1

log

(
1√

2πσ2
e−

(yi−Xiβ)2

2σ2

)

=
n∑

i=1

(−1

2
log σ2 − 1

2
log 2π − 1

2σ2
(yi − Xiβ)2)

= −n

2
log σ2 − n

2
log 2π − 1

2σ2

n∑
i=1

(yi − Xiβ)2

= −n

2
log σ2 − n

2
log 2π − 1

2σ2
(y − Xβ)′(y − Xβ)

(Davidson and MacKinnon, 2004, 396–398)
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Linear model: loglikelihood function

f (y,β, σ2) =
n∏

i=1

fi (yi ,β, σ
2) =
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1√
2πσ2

e−
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(
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)

=
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(−1

2
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2
log 2π − 1
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2
log σ2 − n

2
log 2π − 1
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(yi − Xiβ)2
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2σ2
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(Davidson and MacKinnon, 2004, 396–398)
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Linear model: estimating σ2

∂`(y,β, σ2)

∂σ2
= − n

2σ2
+

1

2σ4
(y − Xβ)′(y − Xβ)

0 = − n

2σ̂2
+

1

2σ̂4
(y − Xβ)′(y − Xβ)

n

2σ̂2
=

1

2σ̂4
(y − Xβ)′(y − Xβ)

n =
1

σ̂2
(y − Xβ)′(y − Xβ)

σ̂2 =
1

n
(y − Xβ)′(y − Xβ)

Thus σ̂2 is a function of β.

(Davidson and MacKinnon, 2004, 396–398)
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Linear model: estimating σ2

σ̂2 =
1

n
(y − Xβ)′(y − Xβ) =

e′e

n

Note that this is almost the equivalent of the variance
estimator of OLS ( e′e

n−k ). This estimator is a biased, but

consistent, estimator of σ̂2.
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Linear model: estimating β

`(y,β, σ2) = −n

2
log σ2 − n

2
log 2π − 1

2σ2
(y − Xβ)′(y − Xβ)

`(y,β) = −n

2
log(

1

n
(y − Xβ)′(y − Xβ))− n

2
log 2π

− 1

2( 1n (y − Xβ)′(y − Xβ))
(y − Xβ)′(y − Xβ)

= −n

2
log(

1

n
(y − Xβ)′(y − Xβ))− n

2
log 2π − n

2

Because the middle term is equivalent to minus n/2 times the
log of SSR, maximizing `(y,β) with respect to β is the
equivalent to minimizing SSR: β̂ML = β̂OLS .

(Davidson and MacKinnon, 2004, 396–398)



maximum
likelihood

Outline

Likelihoods

Linear model

Score and
Hessian
matrices

Asymptotics

Standard tests

References

Maximum Likelihood Estimates

The maximum likelihood estimate of θ is the value of θ which
maximizes the (log)likelihood function `(y,θ).

In some cases, such as the above exponential distribution or
the linear model, we can find this value analytically, but taking
the derivative, and setting equal to zero.

In many other cases, there is no such analytical solution, and
we use numerical search algorithms to find the value.
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Linear model

`(y,β, σ2) = −n

2
log σ2 − n

2
log 2π − 1

2σ2
(y − Xβ)′(y − Xβ)

ll <- function(par, X, y) {

s2 <- exp(par[1])

beta <- par[-1]

n <- length(y)

r <- y - X %*% beta

- n/2 * log(s2) - n/2 * log(2*pi) -

1/(2*s2) * sum(r^2)

}

mlest <- optim(c(1,0,0,0), ll, NULL, X, y,

control = list(fnscale = -1), hessian = TRUE)
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Linear model

Some practical tricks:

• By default, optim() minimizes rather than maximizes,
hence the need for fnscale = -1.

• To get σ̂2, we need to take the exponent of the first
parameter—this is done to make sure σ2 is always
assumed positive.
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Gradient vector

The gradient vector or score vector is a vector with typical
element:

gj(y,θ) ≡ ∂`(y,θ)

∂θj
,

i.e. the vector of partial derivatives of the loglikelihood
function towards each parameter in θ.

(Davidson and MacKinnon, 2004, 400)
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Hessian matrix

H(θ) is a k × k matrix with typical element

hij =
∂2`(θ)

∂θiθj
,

i.e. the matrix of second derivatives of the loglikelihood
function.

Asymptotic equivalent: H(θ) ≡ plimn→∞
1
nH(y,θ).

(Davidson and MacKinnon, 2004, 401, 407)
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Information matrix

I(θ) =
n∑

i=1

Eθ((Gi (y,θ))′Gi (y,θ))

I(θ) is the information matrix, or the covariance matrix of the
score vector.

There is also an asymptotic equivalent, I(θ) ≡ plimn→∞
1
n I(θ).

I(θ) = −H(θ) - they both measure the amount of curvature
in the loglikelihood function.

(Davidson and MacKinnon, 2004, 406–407)
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Newton’s Method

One numerical optimization algorithm is Newton’s Method,
which updates each iteration the estimate for the parameters
based on the Hessian matrix and the gradient, i.e. based on the
amount of curvature of the log-likelihood function at a
particular point.

θ(m+1) = θ(m) −H−1(m)g(m)

(Davidson and MacKinnon, 2004, 401)
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Asymptotics

Under some weak conditions, ML estimators are consistent,
asymptotically efficient and asymptotically normally
distributed.

New ML estimators thus do not require extensive proof of this -
once it is shown it is an ML estimator, it “inherits” those
properties.

(Davidson and MacKinnon, 2004, 402–403)
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Variance-covariance matrix of β̂ML

V
(
plimn→∞

√
n(β̂ML − θ)

)
= H−1(θ)I (θ)H−1(θ) = I−1(θ),

the latter being true iff I(θ) = −H(θ) is true.

One estimator for the variance is: V (β̂ML) = −H−1(β̂ML). For
alternative estimators see reference below.

(Davidson and MacKinnon, 2004, 409–411)

mlest <- optim(..., hessian = TRUE)

V <- solve(-mlest$hessian)

sqrt(diag(V))
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Example

Imagine, we take a random sample of N colored balls from a
vase, with replacement. In the vase, a fraction p of the balls
are yellow and the other ones blue. In our sample, there are q
yellow balls. Assuming that yi = 1 if the ball is yellow and
yi = 0 for blue, the probability of obtaining our sample is:

P(q) = pq(1− p)N−q,

which is the likelihood function with unknown parameter p.
Write down the loglikelihood function.

`(p) = log(pq(1− p)N−q) = q log p + (N − q) log(1− p)

(Verbeek, 2008, 172–173)
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Example

`(p) = q log p + (N − q) log(1− p)

Take derivative towards p.

d`(p)

dp
=

q

p
+

N − q

1− p

Set equal to zero and find p̂ML.

q

p̂
+

N − q

1− p̂
= 0 =⇒ p̂ =

q

N

(Verbeek, 2008, 172–173)
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Example

`(p) = q log p + (N − q) log(1− p)

Using the loglikelihood function and optim(), find p for
N = 100 and q = 30. ML estimates are “invariant under
reparametrization”, so we will use the logit transform of p
instead of p, to avoid probabilities outside [0, 1]:
p∗ = (1 + e−p)−1.

ll <- function(p, N, q) {

pstar <- 1 / (1 + exp(-p))

q * log(pstar) + (N - q) * log(1 - pstar)

}

mlest <- optim(0, ll, NULL, N=100, q=30,

hessian = TRUE, control = list(fnscale = -1))

phat <- 1 / (1 + exp(-mlest$par))
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Example

Using the previous estimate, including the Hessian, calculate a
95% confidence interval around this p̂.

se <- sqrt(-1/mlest$hessian)

ci <- c(mlest$par - 1.96 * se, mlest$par + 1.96 * se)

ci <- 1 / (1 + exp(-ci))
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Standard tests

Within the ML framework, there are three common tests:

• Likelihood ratio test (LR)

• Wald test (W )

• Lagrange multiplier test (LM)

These are asymptotically equivalent. Given r restrictions, all
have asymptotically a χ2(r) distribution.

In the following, θ̃ML will denote the restricted estimate and
θ̂ML the unrestricted one.

(Davidson and MacKinnon, 2004, 414)
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Likelihood ratio test

LR = 2(`(θ̂ML)− `(θ̃ML)) = 2 log
L(θ̂ML)

L(θ̃ML)
,

thus twice the log of the ratio of likelihood functions.

If we have two separate estimates, this is thus very easy to
compute or even “eye-ball”.

(Davidson and MacKinnon, 2004, 414–416)
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Likelihood ratio test

0 1 2 3 4 5 6 7
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Wald test

The basic intuition is that the Wald test is quite comparable to
an F -test on a set of restrictions. For a single regression
parameter the formule would be:

W = −d2L(β)

dβ2
(β̂ − β0)2

This test does not require an estimate of θ̃ML. The test is
somewhat sensitive to the formulation of r, so that as long as
estimating θ̃ML is not too costly, it is better to use an LR or
LM test.

Intuition: If the second derivative is higher, the slope of `(·)
changes faster, thus the difference between the likelihoods at
the restricted and unrestricted positions will be larger.

(Davidson and MacKinnon, 2004, 416–418)
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Wald test

0 1 2 3 4 5 6 7

−
15

−
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Lagrange multiplier test

For a single parameter:

LM =

(
dL(β̃)

d β̃

)2
d2L(β̃)

d β̃2

Thus the steeper the slope of the loglikelihood function at the
point of the restricted estimate, the more likely it is
significantly different from the unrestricted estimate, unless this
slope changes very quickly (the second derivative is high).
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Lagrange multiplier test
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