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Terminology

y is the dependent variable

referred to also (by Greene) as a regressand

X are the independent variables

also known as explanatory variables
also known as regressors or predictors (or factors, carriers)
X is sometimes called the design matrix (or factor space)

y is regressed on X

The error term ε is sometimes called a disturbance:
ε = y − Xβ.

The difference between the observed and predicted dependent
variable is called the residual: e = y − ŷ = y − Xβ̂.

Jos Elkink ordinary least squares



Linear model
OLS assumptions

OLS algebra
OLS properties

R2

Linear model

yi = β0 + β1x1 + β2x2 + · · · + εi
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yi = β0 + β1x1 + β2x2 + · · · + εi

y = Xβ + ε

ε ∼ N(0, σ2)

y ∼ N(Xβ, σ2)
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Components

Two components of the model:

y ∼ N(µ, σ2) Stochastic
µ = Xβ Systematic

Generalised version (not necessarily linear):

y ∼ f (µ, α) Stochastic
µ = g(X, β) Systematic

(King 1998, 8)
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Components

y ∼ f (µ, α) Stochastic
µ = g(X, β) Systematic

Stochastic component: varies over repeated (hypothetical)
observations on the same unit.

Systematic component: varies across units, but constant given X.

(King 1998, 8)
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µ = g(X, β) Systematic

Two types of uncertainty:

Estimation uncertainty: lack of knowledge about α and β; can
be reduced by increasing n.
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Uncertainty

y ∼ f (µ, α) Stochastic
µ = g(X, β) Systematic

Two types of uncertainty:

Estimation uncertainty: lack of knowledge about α and β; can
be reduced by increasing n.
Fundamental uncertainty: represented by stochastic component
and exists independent of researcher.
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Ordinary Least Squares (OLS)

For the linear model, the most popular method of estimation is
ordinary least squares (OLS).

β̂OLS are those estimates of β that minimize the sum of squared
residuals: e′e.
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Ordinary Least Squares (OLS)

For the linear model, the most popular method of estimation is
ordinary least squares (OLS).

β̂OLS are those estimates of β that minimize the sum of squared
residuals: e′e.

OLS is the best linear unbiased estimator (BLUE).
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Assumptions: specification

Linear in parameters (i.e. f (Xβ) = Xβ and E (y) = Xβ)

Note that this does not imply that you cannot include non-linearly

transformed variables, e.g. yi = β0 + β1xi + β2x
2
i + εi can be estimated

with OLS.
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Assumptions: specification

Linear in parameters (i.e. f (Xβ) = Xβ and E (y) = Xβ)

No extraneous variables in X

No omitted independent variables

Parameters to be estimated are constant

Number of parameters is less than the number of cases, k < n
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Assumptions: errors

Errors have an expected value of zero, E (ε|X) = 0

Errors are normally distributed, ε ∼ N(0, σ2)

Errors have a constant variance, var(ε|X) = σ2 < ∞

Errors are not autocorrelated, cov(εi , εj |X) = 0 ∀ i 6= j

Errors and X are uncorrelated, cov(X, ε) = 0
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Assumptions: regressors

X varies

X is of full column rank (note: requires k < n)

No measurement error in X

No endogenous variables in X
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R code

y = Xβ + ε











y1

y2
...
yn











n×1

=











1 x12 x13 · · · x1k

1 x22 x23 · · · x2k
...

...
. . .

...
1 xn2 xn3 · · · xnk











n×k











β1

β2
...

βk











k×1

+











ε1

ε2
...
εn











n×1
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y = Xβ + ε
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...
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1 x12 x13 · · · x1k

1 x22 x23 · · · x2k
...
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. . .
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1 xn2 xn3 · · · xnk











n×k











β1

β2
...

βk











k×1

+











ε1

ε2
...
εn











n×1











y1

y2
...
yn











n×1

=











β1 + β2x12 + β3x13 + · · · + βkx1k

β1 + β2x22 + β3x23 + · · · + βkx2k
...

β1 + β2xn2 + β3xn3 + · · · + βkxnk











n×1

+











ε1

ε2
...
εn











n×1
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Deriving β̂OLS

y = Xβ + ε

y = Xβ̂ + e
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Estimating β̂
Estimating var(β̂)
Estimating σ
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R code

Deriving β̂OLS

y = Xβ + ε

y = Xβ̂ + e

β̂OLS = arg min
β̂

e′e

= arg min
β̂

(y − Xβ̂)′(y − Xβ̂)
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R code

Deriving β̂OLS

e′e = (y − Xβ̂)′(y − Xβ̂)

= (y′ − (Xβ̂)′)(y − Xβ̂)

= y′y − (Xβ̂)′y − y′Xβ̂ + (Xβ̂)′Xβ̂

= y′y − β̂′X′y − y′Xβ̂ + β̂′X′Xβ̂

= y′y − 2y′Xβ̂ + β̂′X′Xβ̂

Jos Elkink ordinary least squares



Linear model
OLS assumptions

OLS algebra
OLS properties

R2

Estimating β̂
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Estimating σ
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R code

Deriving β̂OLS

β̂OLS = arg min
β̂

e′e =⇒

∂(e′e)

∂β̂OLS
= 0

∂(y′y − 2y′Xβ̂ + β̂′X′Xβ̂)

∂β̂OLS
= 0
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R code

Deriving β̂OLS

∂(y′y − 2y′Xβ̂ + β̂′X′Xβ̂)

∂β̂OLS
= 0

2X′Xβ̂OLS − 2X′y = 0

2X′Xβ̂OLS = 2X′y

X′Xβ̂OLS = X′y

(X′X)−1X′Xβ̂OLS = (X′X)−1X′y

β̂OLS = (X′X)−1X′y
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X′Xβ̂OLS = X′y











1 x12 x13 · · · x1k

1 x22 x23 · · · x2k
...

...
...

. . .
...

1 xn2 xn3 · · · xnk











′

n×k











1 x12 x13 · · · x1k

1 x22 x23 · · · x2k
...

...
...

. . .
...

1 xn2 xn3 · · · xnk











n×k











β̂1

β̂2
...

β̂k











k×1

=











1 x12 x13 · · · x1k

1 x22 x23 · · · x2k
...

...
...

. . .
...

1 xn2 xn3 · · · xnk











′

n×k











y1

y2
...
yn











n×1

(β̂ here refers to OLS estimates.)
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X′Xβ̂OLS = X′y















1 1 · · · 1
x12 x22 · · · xn2

x13 x23 · · · xn3
...

...
. . .

...
x1k x2k · · · xnk















k×n











1 x12 x13 · · · x1k

1 x22 x23 · · · x2k
...

...
...

. . .
...

1 xn2 xn3 · · · xnk











n×k











β̂1

β̂2
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k×1

=















1 1 · · · 1
x12 x22 · · · xn2

x13 x23 · · · xn3
...

...
. . .

...
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yn











n×1

Jos Elkink ordinary least squares



Linear model
OLS assumptions

OLS algebra
OLS properties

R2

Estimating β̂
Estimating var(β̂)
Estimating σ

2

R code

X′Xβ̂OLS = X′y















n
∑

xi2 · · ·
∑

xik
∑

xi2
∑

(xi2)
2 · · ·

∑

xi2xik
∑

xi3
∑

xi3xi2 · · ·
∑

xi3xik

...
...

. . .
...

∑

xik

∑

xikxi2 · · ·
∑

(xik)2















k×k















β̂1

β̂2

β̂3
...

β̂k















k×1

=















∑

yi
∑

xi2yi
∑

xi3yi

...
∑

xikyi















k×1

(
∑

refers to
∑n

i .)
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X′Xβ̂OLS = X′y

So this can be seen as a set of linear equations to solve:

β̂1n + β̂2

∑

xi2 + · · · + β̂k

∑

xik =
∑

yi

β̂1

∑

xi2 + β̂2

∑

(xi2)
2 + · · · + β̂k

∑

xi2xik =
∑

xi2yi

β̂1

∑

xi3 + β̂2

∑

xi3xi2 + · · · + β̂k

∑

xi3xik =
∑

xi3yi

...

β̂1

∑

xik + β̂2

∑

xikxi2 + · · · + β̂k

∑

(xik)2 =
∑

xikyi
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X′Xβ̂OLS = X′y

When there is only one independent variable, this reduces to:

β̂1n + β̂2

∑

xi =
∑

yi

β̂1

∑

xi + β̂2

∑

x2
i =

∑

xiyi
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R code

X′Xβ̂OLS = X′y

When there is only one independent variable, this reduces to:

β̂1n + β̂2

∑

xi =
∑

yi

β̂1

∑

xi + β̂2

∑

x2
i =

∑

xiyi

β̂1 =

∑

yi − β̂2
∑

xi

n
=

nȳ − β̂2nx̄

n
= ȳ − β̂2x̄

(ȳ − β̂2x̄)
∑

xi + β̂2

∑

x2
i =

∑

xiyi

nȳ x̄ − β̂2nx̄2 + β̂2

∑

x2
i =

∑

xiyi

β̂2 =

∑

xiyi − nȳ x̄
∑

x2
i − nx̄2
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Simple regression

yi = β0 + β1xi + εi
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R code

Simple regression

yi = β0 + β1xi + εi

If β1 = 0 and the only regressor is the intercept, then β̂0 = ȳ .

If β0 = 0, so that there is no intercept and one explanatory

variable x, then β̂1 =
Pn

i xiyi
Pn

i x2
i

.
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R code

Simple regression

yi = β0 + β1xi + εi

If β1 = 0 and the only regressor is the intercept, then β̂0 = ȳ .

If β0 = 0, so that there is no intercept and one explanatory

variable x, then β̂1 =
Pn

i xiyi
Pn

i x2
i

.

If there is an intercept and one explanatory variable, then

β̂1 =

∑n
i (xi − x̄)(yi − ȳ)
∑n

i (xi − x̄)2
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Demeaning

If the observations are expressed as deviations from their means,
i.e.:

yi∗ = yi − ȳ

x∗

i = xi − x̄ ,

then

β̂1 =

∑n
i x∗

i y∗

i
∑n

i x∗2
i
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Demeaning

If the observations are expressed as deviations from their means,
i.e.:

yi∗ = yi − ȳ

x∗

i = xi − x̄ ,

then

β̂1 =

∑n
i x∗

i y∗

i
∑n

i x∗2
i

The intercept can be estimated as ȳ − β̂1x̄ .
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R code

Standardized variables

The coefficient on a variable is interpreted as the effect on y given
a one unit increase in x and thus the interpretation is dependent
on the scale of measurement.
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Standardized variables

The coefficient on a variable is interpreted as the effect on y given
a one unit increase in x and thus the interpretation is dependent
on the scale of measurement.

An option can be to standardize the variables:

y∗ =
y − ȳ
√

σ2
y

x∗ =
x − x̄
√

σ2
x

y∗ = X∗β∗ + ε∗

and interpret the coefficients as the effect on y expressed in
standard deviations as x increase by one standard deviation.
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Standardized variables

library(arm)

summary(standardize(lm(y ~ x)),

binary.inputs="leave.alone")
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R code

Standardized variables

library(arm)

summary(standardize(lm(y ~ x)),

binary.inputs="leave.alone")

See also Andrew Gelman (2007), “Scaling regression inputs by dividing

by two standard deviations”.
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Exercise: teenage gambling

library(faraway)

data(teengamb)

summary(teengamb)

Using matrix formulas,

1 regress gamble on a constant

2 regress gamble on sex

3 regress gamble on sex, status, income, verbal
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R code

Exercise: teenage gambling

1 Regress gamble on sex, status, income, verbal

2 Which observation has the largest residual?

3 Compute mean and median of residuals

4 Compute correlation between residuals and fitted values

5 Compute correlation between residuals and income

6 All other predictors held constant, what would be the
difference in predicted expenditure on gambling between
males and females?
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Deriving var(β̂OLS)

var(β̂OLS) = E [(β̂OLS − E (β̂OLS))(β̂OLS − E (β̂OLS))′]

= E [(β̂OLS − β)(β̂OLS − β)′]

Jos Elkink ordinary least squares



Linear model
OLS assumptions

OLS algebra
OLS properties

R2

Estimating β̂
Estimating var(β̂)
Estimating σ

2

R code

Deriving var(β̂OLS)

β̂OLS − β = (X′X)−1X′y − β

= (X′X)−1X′(Xβ + ε) − β

= (X′X)−1X′Xβ + (X′X)−1X′ε − β

= β + (X′X)−1X′ε − β

= (X′X)−1X′ε
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R code

Deriving var(β̂OLS)

var(β̂OLS) = E [(β̂OLS − β)(β̂OLS − β)′]

= E [((X′X)−1X′ε)((X′X)−1X′ε)′]

= E [(X′X)−1X′εε′X(X′X)−1]

= (X′X)−1X′E [εε′]X(X′X)−1

= (X′X)−1X′σ2IX(X′X)−1

= σ2(X′X)−1X′X(X′X)−1

= σ2(X′X)−1
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Standard errors

var(β̂OLS) = σ2(X′X)−1

The standard errors of β̂OLS are then the square root of the
diagonal of this matrix.
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R code

Standard errors

var(β̂OLS) = σ2(X′X)−1

The standard errors of β̂OLS are then the square root of the
diagonal of this matrix.

In the simple case where y = β0 + β1x, this gives

var(β̂1) =
σ2

∑n
i (xi − x̄)2

Note how an increase in variance in x leads a decrease in the
standard error of β̂1.
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Estimating β̂
Estimating var(β̂)
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2

R code

Estimating σ
2

e = y − Xβ̂OLS

= y − X(X′X)−1X′y

= (I − X(X′X)−1X′)y

= My



Linear model
OLS assumptions

OLS algebra
OLS properties

R2

Estimating β̂
Estimating var(β̂)
Estimating σ

2

R code

Estimating σ
2

e = y − Xβ̂OLS

= y − X(X′X)−1X′y

= (I − X(X′X)−1X′)y

= My

= M(Xβ + ε)

= (I − X(X′X)−1X′)Xβ + Mε

= Xβ − X(X′X)−1X′Xβ + Mε

= Xβ − Xβ + Mε

= Mε
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Linear model
OLS assumptions

OLS algebra
OLS properties

R2

Estimating β̂
Estimating var(β̂)
Estimating σ

2

R code

Estimating σ
2

e′e = (Mε)′(Mε)

= ε′M′Mε

= ε′Mε

E [e′e|X] = E [ε′Mε|X]
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OLS algebra
OLS properties

R2

Estimating β̂
Estimating var(β̂)
Estimating σ

2

R code

Estimating σ
2

e′e = (Mε)′(Mε)

= ε′M′Mε

= ε′Mε

E [e′e|X] = E [ε′Mε|X]

ε′Mε is a scalar, so if you see it as a 1× 1 matrix, it is equal to its
trace, therefore

E [e′e|X] = E [tr(ε′Mε|X]

= E [tr(Mεε′)|X]

= tr(ME [εε′|X])

= tr(Mσ2I) = σ2tr(M)
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OLS properties

R2

Estimating β̂
Estimating var(β̂)
Estimating σ

2

R code

Estimating σ
2

tr(M) = tr(I − X(X′X)−1X′)

= tr(I) − tr(X(X′X)−1X′)

= n − tr(X′X(X′X)−1)

= n − k

E (e′e|X) = (n − k)σ2

σ̂2 =
e′e

n − k

Jos Elkink ordinary least squares



Linear model
OLS assumptions

OLS algebra
OLS properties

R2

Estimating β̂
Estimating var(β̂)
Estimating σ

2

R code

OLS in R

n <- dim(X)[1]

k <- dim(X)[2]

b.hat <- solve(t(X) %*% X) %*% t(X) %*% y

e <- y - X %*% b.hat

s2.hat <- 1/(n-k) * t(e) %*% e

v.hat <- s2.hat * solve(t(X) %*% X)
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Linear model
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OLS algebra
OLS properties

R2

Estimating β̂
Estimating var(β̂)
Estimating σ

2

R code

OLS in R

n <- dim(X)[1]

k <- dim(X)[2]

b.hat <- solve(t(X) %*% X) %*% t(X) %*% y

e <- y - X %*% b.hat

s2.hat <- 1/(n-k) * t(e) %*% e

v.hat <- s2.hat * solve(t(X) %*% X)

Or:

summary(lm(y ~ X))
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R2

Estimating β̂
Estimating var(β̂)
Estimating σ

2

R code

Exercise: US wages

library(faraway)

data(uswages)

summary(uswages)

1 Using matrix formulas, regress wage on educ, exper and race.

2 Interpret the results

3 Plot residuals against fitted values and against educ

4 Repeat with log(wage) as dependent variable
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Linear model
OLS assumptions

OLS algebra
OLS properties

R2

Unbiasedness of β̂OLS

Efficiency of β̂OLS

Consistency of β̂OLS

Unbiasedness of β̂OLS

From deriving var(β̂OLS) we have:

β̂OLS − β = (X′X)−1X′y − β

= (X′X)−1X′(Xβ + ε) − β

= (X′X)−1X′Xβ + (X′X)−1X′ε − β

= β + (X′X)−1X′ε − β

= (X′X)−1X′ε
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Linear model
OLS assumptions

OLS algebra
OLS properties

R2

Unbiasedness of β̂OLS

Efficiency of β̂OLS

Consistency of β̂OLS

Unbiasedness of β̂OLS

From deriving var(β̂OLS) we have:

β̂OLS − β = (X′X)−1X′y − β

= (X′X)−1X′(Xβ + ε) − β

= (X′X)−1X′Xβ + (X′X)−1X′ε − β

= β + (X′X)−1X′ε − β

= (X′X)−1X′ε

Since we assume E (ε) = 0:

E (β̂OLS − β) = (X′X)−1X′E (ε) = 0
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Linear model
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OLS algebra
OLS properties

R2

Unbiasedness of β̂OLS

Efficiency of β̂OLS

Consistency of β̂OLS

Unbiasedness of β̂OLS

From deriving var(β̂OLS) we have:

β̂OLS − β = (X′X)−1X′y − β

= (X′X)−1X′(Xβ + ε) − β

= (X′X)−1X′Xβ + (X′X)−1X′ε − β

= β + (X′X)−1X′ε − β

= (X′X)−1X′ε

Since we assume E (ε) = 0:

E (β̂OLS − β) = (X′X)−1X′E (ε) = 0

Therefore, β̂OLS is an unbiased estimator of β.
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R2

Unbiasedness of β̂OLS

Efficiency of β̂OLS

Consistency of β̂OLS

Efficiency of β̂OLS

The Gauss-Markov theorem states that there is no linear

unbiased estimator of β that has a smaller sampling variance
than β̂OLS , i.e. β̂OLS is BLUE.
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R2

Unbiasedness of β̂OLS

Efficiency of β̂OLS

Consistency of β̂OLS

Efficiency of β̂OLS

The Gauss-Markov theorem states that there is no linear

unbiased estimator of β that has a smaller sampling variance
than β̂OLS , i.e. β̂OLS is BLUE.

An estimator is linear iff it can be expressed as a linear function of
the data on the dependent variable: β̂linear

j =
∑n

i f (xij)yi , which is
the case for OLS:

β̂OLS = (X′X)−1X′y

= Cy

(Wooldridge, pp. 101-102, 111-112)
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R2

Unbiasedness of β̂OLS

Efficiency of β̂OLS

Consistency of β̂OLS

Gauss-Markov Theorem

β̂OLS = (X′X)−1X′y

= Cy

Imagine we have another linear estimator: β̂∗ = Wy, where
W = C + D.
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R2

Unbiasedness of β̂OLS

Efficiency of β̂OLS

Consistency of β̂OLS

Gauss-Markov Theorem

β̂OLS = (X′X)−1X′y

= Cy

Imagine we have another linear estimator: β̂∗ = Wy, where
W = C + D.

β̂∗ = (C + D)y

= Cy + Dy

= β̂OLS + D(Xβ + ε)

= β̂OLS + DXβ + Dε
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R2

Unbiasedness of β̂OLS

Efficiency of β̂OLS

Consistency of β̂OLS

Gauss-Markov Theorem

E (β̂∗) = E (β̂OLS + DXβ + Dε)

= E (β̂OLS) + DXβ + E (Dε)

= β + DXβ + 0

⇒ DXβ = 0

⇒ DX = 0,

because both β̂OLS and β̂∗ are unbiased, so
E (β̂OLS) = E (β̂∗) = β.

(Hayashi, pp. 29-30)
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Unbiasedness of β̂OLS

Efficiency of β̂OLS

Consistency of β̂OLS

Gauss-Markov Theorem

β̂∗ = β̂OLS + Dε

β̂∗ − β = β̂OLS + Dε − β

= (C + D)ε
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R2

Unbiasedness of β̂OLS

Efficiency of β̂OLS

Consistency of β̂OLS

Gauss-Markov Theorem

β̂∗ = β̂OLS + Dε

β̂∗ − β = β̂OLS + Dε − β

= (C + D)ε

var(β̂∗) = E (β̂∗ − β)E (β̂∗ − β)′

= E ((C + D)ε)E ((C + D)ε)′

= (C + D)E (εε′)(C + D)′

= σ2(C + D)(C + D)′

= σ2(CC′ + DC′ + CD′ + DD′)

= σ2((X′X)−1 + DD′)

≥ σ2(X′X)−1
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R2

Unbiasedness of β̂OLS

Efficiency of β̂OLS

Consistency of β̂OLS

Consistency of β̂OLS

β̂OLS = (X′X)−1X′y

= (X′X)−1X′(Xβ + ε)

= β + (X′X)−1X′ε

= β + (
1

n
X′X)−1(

1

n
X′ε)
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R2

Unbiasedness of β̂OLS

Efficiency of β̂OLS

Consistency of β̂OLS

Consistency of β̂OLS

β̂OLS = (X′X)−1X′y

= (X′X)−1X′(Xβ + ε)

= β + (X′X)−1X′ε

= β + (
1

n
X′X)−1(

1

n
X′ε)

lim
n→∞

1

n
X′X = Q =⇒ lim

n→∞

(
1

n
X′X)−1 = Q−1
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R2

Unbiasedness of β̂OLS

Efficiency of β̂OLS

Consistency of β̂OLS

Consistency of β̂OLS

β̂OLS = (X′X)−1X′y

= (X′X)−1X′(Xβ + ε)

= β + (X′X)−1X′ε

= β + (
1

n
X′X)−1(

1

n
X′ε)

lim
n→∞

1

n
X′X = Q =⇒ lim

n→∞

(
1

n
X′X)−1 = Q−1

E (
1

n
X′ε) = E (

1

n

n
∑

i

xiεi ) = 0
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R2

Unbiasedness of β̂OLS

Efficiency of β̂OLS

Consistency of β̂OLS

Consistency of β̂OLS

var(
1

n
X′ε) = E (

1

n
X′ε(

1

n
X′ε)′)

=
1

n
X′E (εε′)X

1

n

= (
σ2

n
)(

X′X

n
)

lim
n→∞

var(
1

n
X′ε) = 0Q = 0
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Unbiasedness of β̂OLS

Efficiency of β̂OLS

Consistency of β̂OLS

Consistency of β̂OLS

β̂OLS = β + (
1

n
X′X)−1(

1

n
X′ε)

lim
n→∞

(
1

n
X′X)−1 = Q−1

E (
1

n
X′ε) = 0

lim
n→∞

var(
1

n
X′ε) = 0

imply that the sampling distribution of β̂OLS “collapses” to β as
n becomes very large, i.e.:

plim
n→∞

β̂OLS = β
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1 Linear model

2 OLS assumptions

3 OLS algebra

4 OLS properties

5 R2
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R2

Sums of squares

SST Total sum of squares
∑

(yi − ȳ)2

SSE Explained sum of squares
∑

(ŷi − ȳ)2

SSR Residual sum of squares
∑

e2
i =

∑

(ŷi − yi )
2 = e′e

The key to remember is that SST = SSE + SSR
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R2

Sums of squares

SST Total sum of squares
∑

(yi − ȳ)2

SSE Explained sum of squares
∑

(ŷi − ȳ)2

SSR Residual sum of squares
∑

e2
i =

∑

(ŷi − yi )
2 = e′e

The key to remember is that SST = SSE + SSR

Sometimes instead of “explained” and “residual”, “regression” and
“error” are used, respectively, so that the abbreviations are
swapped (!).
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R
2

Defined in terms of sums of squares:

R2 =
SSE

SST

= 1 −
SSR

SST

= 1 −

∑

(yi − ŷi )
2

∑

(yi − ȳ)2

Interpretation: the proportion of the variation in y that is explained
linearly by the independent variables
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R2

R
2

Defined in terms of sums of squares:

R2 =
SSE

SST

= 1 −
SSR

SST

= 1 −

∑

(yi − ŷi )
2

∑

(yi − ȳ)2

Interpretation: the proportion of the variation in y that is explained
linearly by the independent variables

A much over-used statistic: it may not be what we are interested
in at all
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R
2 in matrix algebra

y′y = (ŷ + e)′(ŷ + e)

= ŷ′ŷ + ŷ′e + e′ŷ + e′e

= ŷ′ŷ + 2β̂′X′e + e′e

= ŷ′ŷ + e′e
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R2

R
2 in matrix algebra

y′y = (ŷ + e)′(ŷ + e)

= ŷ′ŷ + ŷ′e + e′ŷ + e′e

= ŷ′ŷ + 2β̂′X′e + e′e

= ŷ′ŷ + e′e

R2 = 1 −
e′e

y′y
=

ŷ′ŷ

y′y

(Hayashi, p. 20)
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R
2

When a model has no intercept, it is possible for R2 to lie outside
the interval (0, 1)
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R
2

When a model has no intercept, it is possible for R2 to lie outside
the interval (0, 1)

R2 rises with the addition of more explanatory variables. For this
reason we often report the adjusted R2:

1 − (1 − R2)
n − 1

n − k
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R2

R
2

When a model has no intercept, it is possible for R2 to lie outside
the interval (0, 1)

R2 rises with the addition of more explanatory variables. For this
reason we often report the adjusted R2:

1 − (1 − R2)
n − 1

n − k

The R2 values from different y samples cannot be compared
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Exercise: US wages

library(faraway)

data(uswages)

summary(uswages)

1 Using matrix formulas, regress wage on educ, exper and race.

2 What proportion of the variance in wage is explained by these
three variables?
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