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Introduction

Topic: advanced quantitative methods in political science.

Or, alternatively: basic econometrics, as applied in political science.

Or, alternatively: linear regression and some non-linear extensions.
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Readings

Peter Kennedy (2008), A guide to econometrics. 6th ed.,
Malden: Blackwell.

Damodar N. Gujarati (2009), Basic econometrics. 5th ed.,
Boston: McGraw-Hill.

Julian J. Faraway (2005), Linear models with R. Baco Raton:
Chapman & Hill.

Andrew Gelman & Jennifer Hill (2007), Data analysis using
regression and multilevel/hierarchical models. Cambridge:
Cambridge University Press.

William H. Greene (2003), Econometric analysis. 5th ed.,
Upper Saddle River: Prentice Hall.
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Topics

1 21/1 Mathematics review
2 28/1 Statistical estimators
3 4/2 Ordinary Least Squares
4 11/2 Regression diagnostics
5 18/2 Time-series analysis
6 25/2 Causal inference
7 4/3 Maximum Likelihood

Study break
8 1/4 Limited dependent variables I
9 8/4 Limited dependent variables II

10 15/4 Bootstrap and simulation
11 22/4 Multilevel and panel data
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Frequentist vs Bayesian

Frequentist statistics interprets probability as the frequency of
occurrance in (hypothetically) many repetitions. E.g. if we throw
this dice infinitely many times, what proportion of times would it
be heads? We can here also talk of conditional probabilities:
what would this frequency be if ... and some condition follows.

Bayesian statistics interprets probability as a belief: if I throw
this dice, what do you think is the chance of getting heads? We
can now talk of conditional probabilities in a different way: how
would your belief change given that ... and some condition follows.

This course is a course in the frequentist analysis of regression
models.
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Homeworks

50 % Five homeworks
due at specified dates

50 % Replication paper
due May 14, 2014, 5 pm

No exam

Working with others is a good idea
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Grade conversions

Homeworks UCD TCD Homeworks UCD TCD

97-100% A+ A+ 54-64% E+ D
94-96% A A 44-53% E D
91-93% A- A 33-43% E- D
88-90% B+ B+ 0-32% F F
85-87% B B
83-84% B- B
80-82% C+ C+
77-79% C C
74-76% C C
71-73% D+ C
68-70% D C
65-67% D- C
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Replication paper

Find replicable paper now and check whether appropriate

Contact authors asap if you need their data

See Gary King, “Publication, publication”

It is highly recommended to use the March break for the data
analysis of the final assignment, to leave only the write-up to May.
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Syllabus and website

Website: http://www.joselkink.net/teaching

Syllabus downloadable there

Slides and notes on website

Data for exercises on website

Booklet with commands available
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Vectors: examples

v =


3
4
1
5

 w =
[
3.23 1.30 7.89 1.00

]

β =


β0
β1
β2
β3
β4


v and β are column vectors, while w is a row vector. When not
specified, assume a column vector.
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Vectors: transpose

v =


3
4
1
5

 v′ =
[
3 4 1 5

]
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Vectors: summation

v =


3
5
9
1
3


N∑
i

vi = 3 + 5 + 9 + 1 + 3

= 21

Johan A. Elkink math (p)review



Course outline
Matrix algebra

Expectations and variances

Vectors: addition


2
3
1
6

+


6
3
9
2

 =


8
6

10
8
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Vectors: multiplication with scalar

v =


2
3
1
6



3v =


6
9
3

18
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Vectors: inner product

v =


5
3
1
3

 w =


7
6
8
1


v′w = 5 · 7 + 3 · 6 + 1 · 8 + 3 · 1 = 64
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Vectors: outer product

v =


5
3
1
3

 w =


7
6
8
1



vw′ =


35 30 40 5
21 18 24 3
7 6 8 1

21 18 24 3
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Matrices: examples

M =

3 4 5
1 2 1
0 9 8

 I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



The latter is called an identity matrix and is a special type of
diagonal matrix.

Both are square matrices.
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Matrices: transpose

X =

1 3 2
9 8 8
9 8 5


X′ =

1 9 9
3 8 8
2 8 5



(A′)′ = A
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Matrices: indexing

X4×3 =


x11 x12 x13
x21 x22 x23
x31 x32 x33
x41 x42 x43



Always rows first, columns second.

So Xn×k is a matrix with n rows and k columns. yn×1 is a column
vector with n elements.
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Matrices: addition

 4 2 1 3
6 5 3 2

11
2 4 21

3 0

+

 7 8 2 0
−3 −2 3 11

2
4 2 1 1

 =

11 10 3 3
3 3 6 31

2
51
2 6 31

3 1



(A + B)′ = A′ + B′
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Matrices: multiplication with scalar

X =

 4 2 1 3
6 5 3 2

11
2 4 21

3 0


4X =

16 8 4 12
24 20 12 8
6 16 71

3 0
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Matrices: multiplication

A =

[
6 4
1 3

]
B =

[
3 2 3
4 2 1

]
AB =

[
6 · 3 + 4 · 4 6 · 2 + 4 · 2 6 · 3 + 4 · 1
1 · 3 + 3 · 4 1 · 2 + 3 · 2 1 · 3 + 3 · 1

]
=

[
34 20 22
15 8 6

]

(ABC)′ = C′B′A′

(AB)C = A(BC)

A(B + C) = AB + AC

(A + B)C = AC + BC
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Special matrices

Symmetric matrix A′ = A
Idempotent matrix A2 = A
Positive-definite matrix x′Ax > 0 ∀ x 6= 0
Positive-semidefinite matrix x′Ax ≥ 0 ∀ x 6= 0
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Matrix rank

The rank of a matrix is the maximum number of independent
columns or rows in the matrix. Columns of a matrix X are
independent if for any v 6= 0, Xv 6= 0

r(A) = r(A′) = r(A′A) = r(AA′)

r(AB) = min(r(A), r(B))
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Matrix rank: example 1

A =

3 5 1
2 2 1
1 4 2


For matrix A, the three columns are independent and r(A) = 3.
There is no v 6= 0 such that Av = 0 (of course, if v = 0,
Av = A0 = 0).
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Matrix rank: example 2

B =

3 5 9
2 2 6
1 4 3


For matrix B the first and the last column vectors are linear
combinations of each other: b•1 = 1

3b•3. At most two columns
(b•1 and b•2 or b•2 and b•3) are independent, so r(B) = 2. We
could construct a matrix v such that Bv = 0, namely
v =

[
1 0 −1

3

]′
(or any v =

[
α 0 −1

3α
]′

).

Johan A. Elkink math (p)review



Course outline
Matrix algebra

Expectations and variances

Matrix rank: example 3

C =

3 5 111
2

2 2 7
1 4 5


r(C) = 2. In this case, one cannot express one of the column
vectors as a linear combination of another column vector, but one
can express any of the column vectors as a linear combination of
the two other column vectors. For example, c•3 = 3c•1 + 1

2c•2 and

thus when v =
[
3 1

2 −1
]′

, Cv = 0.
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Matrix inverse

The inverse of a matrix is the matrix one would have to multiply
with to get the identity matrix, i.e.:

A−1A = AA−1 = I

(A−1)′ = (A′)−1

(AB)−1 = B−1A−1
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Matrices: trace

The trace of a matrix is the sum of the diagonal elements.

A =


4 3 1 8
2 8 5 5
6 7 3 4
1 2 0 1


tr(A) = sum(diag(A)) = 4 + 8 + 3 + 1 = 16
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Expected value

The expected value of a discrete random variable x is:

E (x) =
N∑
i

P(xi ) · xi ,

whereby N is the total number of possible outcomes in S .

The expected value is the mean (µ) of a random variable (not to
be confused with the mean of a particular set of observations).
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Moments

moments are E (x)n, n = 1, 2, ...

So µx is the first moment of x

central moments are E (x − E (x))n, n = 1, 2, ...

absolute moments are E (|x |)n, n = 1, 2, ...

absolute central moments are E (|x − E (x)|)n, n = 1, 2, ...
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Variance

The second central moment is called the variance, so:

var(x) = E (x − E (x))2 = E (x − µx)2

=
N∑
i

P(xi ) · (xi − E (x))2

The standard deviation is the square root of the variance:

sd(x) =
√

var(x) =
√

E (x − E (x))2
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Covariance

The covariance of two random variables x and y is defined as:

cov(x , y) = E [(x − E (x))(y − E (y))]

If x and y are independent of each other, cov(x , y) = 0.
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Variance of a sum

var(x + y) = var(x) + var(y) + 2cov(x , y)

var(x − y) = var(x) + var(y)− 2cov(x , y)
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