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Components

Two components of the model:

y ∼ N(µ, σ2) Stochastic
µ = Xβ Systematic

Generalised version (not necessarily linear):

y ∼ f (µ,α) Stochastic
µ = g(X,β) Systematic

(King 1998, 8)

Johan A. Elkink limited dependent variables



Binary
Multiple categories

Count
Survival

Model
Measurement levels

Components

y ∼ f (µ,α) Stochastic
µ = g(X,β) Systematic

Stochastic component: varies over repeated (hypothetical)
observations on the same unit.

Systematic component: varies across units, but constant given X.

(King 1998, 8)
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Uncertainty

y ∼ f (µ,α) Stochastic
µ = g(X,β) Systematic

Two types of uncertainty:

Estimation uncertainty: lack of knowledge about α and β; can
be reduced by increasing n.
Fundamental uncertainty: represented by stochastic component
and exists independent of researcher.
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Levels of measurement

Discreet Continuous

Nominal party choice -
Ordinal

education level

-
-

Interval

how likely to vote ... temperature

Ratio

deaths in war ideological distance

Categories in no particular order

(examples in cells)
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Levels of measurement

Discreet Continuous

Nominal party choice -
Ordinal education level -

-

Interval how likely to vote ... temperature
Ratio deaths in war ideological distance

All values possible, with a meaningful zero point

(examples in cells)
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Levels of measurement

Discreet Continuous

Nominal party choice -
Ordinal education level -
Binary turnout -

Interval how likely to vote ... temperature
Ratio deaths in war ideological distance

Two categories, coded as 0 and 1

(examples in cells)
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Limited dependent variables

When a dependent variable is not continuous, or is truncated for
some reason, a linear model would lead to implausible predictions.

E.g. regressing whether someone voted on a set of independent
variables will give somewhat reasonable estimates (see previous
homework), but using these estimates to calculate predictions leads
to meaningless predictions.

Furthermore, estimating limited dependent variable data with a
linear model implies serious heteroscedasticity.
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Limited dependent variables

When a dependent variable is not continuous, or is truncated for
some reason, a linear model would lead to implausible predictions.

E.g. regressing whether someone voted on a set of independent
variables will give somewhat reasonable estimates (see previous
homework), but using these estimates to calculate predictions leads
to meaningless predictions.

Furthermore, estimating limited dependent variable data with a
linear model implies serious heteroscedasticity.
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Binary models

Binary models have a dependent variable consisting of two
categories.

For example,

Vote on a particular law

Turning out in an election

Approval in a referendum

Bankrupt or not
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Logistic regression

Stochastic:

yi = Bernoulli(πi ) = πyii (1− πi )1−yi

Variance of stochastic component:

V (yi ) = πi (1− πi )

Systematic:

πi = g(xiβ) =
1

1 + e−xiβ
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Logistic distribution
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Logistic regression

Resulting predictions:

are bounded between 0 and 1

show limited effect at extremes

are a smooth, monotone translation from linear prediction xiβ
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Loglikelihood function

Systematic part:

πi =
1

1 + e−xiβ

Stochastic part:

P(yi = 1) = πyii (1− πi )1−yi

f (y|πi) =
n∏

i=1

πyii (1− πi )1−yi

`(y) = log
n∏

i=1

πyii (1− πi )1−yi

=
n∑

i=1

yi log πi +
n∑

i=1

(1− yi ) log(1− πi )
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Exercise

Using the asiabaro.dta data set, estimate a logistic regression
explaining abstention in elections by trust in the government,
satisfaction with democracy, gender, urbanisation, and preference
for democracy.

Johan A. Elkink limited dependent variables



Binary
Multiple categories

Count
Survival

Logistic regression
Interpretation
Probit regression

Graphical interpretation

Because of the nonlinear relation between xiβ and yi , additional
tools can aid the interpretation of the size of an effect beyond just
looking at β̂.

One method is to plot the relationship between one x and π,
holding the other values of X constant (e.g. at the mean, median,
etc.).

Because the link function g(Xβ) is not linear (but instead
g(Xβ) = 1

1+e−Xβ ), the effect of X on y depends on all X.
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Graphical: example
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Fitted values

A second useful way of interpreting logit regression coefficients is
by describing typical cases or interesting examples.

Party Amount P(Vote = 1) 95% C.I.

Republican $10000 .83 [.69,.95]
Democrat $10000 .44 [.27,.65]
Republican $20000 .93 [.84,.99]
Democrat $20000 .69 [.44,.95]
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First differences

Basic idea is to calculate and present:

∆π̂ = g(Xβ)− g(X∗β),

whereby X∗ differs only in one variable from X.

Variable Values Diff 95% C.I.

Party Rep, Dem -.34 [-.53,-.11]
Amount $10000, $20000 .11 [.03,.20]
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Derivatives

∂π̂

∂xj
= βj π̂(1− π̂)

Hence a quick method to interpret logit coefficients is to divide
them by 4 to get the slope at π̂ = 0.5.
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Presentation

Bottom line: it is much better to present interpretable and
understandable inferences, with an indication of the level of
uncertainty, than to present simply estimated coefficients.
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Presentation

E.g. “An increase in automobile support for a Republican senator
from $10000 to $20000 in total increases his or her probability to
vote for the Corporate Average Fuel Economy standard bill by
11%, give or take 7%, all else equal.”

Johan A. Elkink limited dependent variables



Binary
Multiple categories

Count
Survival

Logistic regression
Interpretation
Probit regression

Confusion matrix

Evaluating the performance of the binary model can be done by
using the confusion matrix:

True value
1 0

P
re

d
ic

ti
on 1 True positive (TP) False positive (FP)

Precision: TP
TP+FP

0 False negative (TN) True negative (FN)

Sensitivity: TP
TP+FN Specificity: TN

FP+TN

Johan A. Elkink limited dependent variables



Binary
Multiple categories

Count
Survival

Logistic regression
Interpretation
Probit regression

Confusion matrix
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Receiver Operating Characteristic curve

The accuracy of predictions will depend on the threshold
probability – variations on default of π̂ = 0.5 are possible.

Depending on the application, it might be better or worse to over-
or underestimate ones relative to zeros.

The ROC-curve plots, for all possible thresholds, the true positive
rate against the false positive rate.

An ROC-curve closer to the 45 degree line indicates a better
predictive performance; any predictions under this line indicate
worse than random prediction.
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Area Under Curve (AUC)

Given the above, we can also calculate the area under the
ROC-curve as a measure of prediction quality. This is somewhat
related to the Gini coefficient for income distributions
(G = 2AUC − 1).

An extensive example in R can be found at
http://www.joselkink.net/pub/ROC-example.html.
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Exercise

Using the logistic previous logistic regression:

1 What is the slope of the regression line with respect to
preference for democracy at π̂ = .5?

2 Calculate predicted differences for urban vs rural respondent.

3 Calculate first differences for urban vs rural and female vs
male.

4 Plot predicted probabilities as a function of preference for
democracy.

5 Calculate the AUC score for this model.
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Threshold models

Imagine we have a latent, unobserved variable:

y∗ ∼ f (µ)

µ = Xβ

With the following observation mechanism:

yi =

{
1 if y∗i > 0

0 if y∗i ≤ 0.
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Threshold models

If f (µi ) is the standardised logistic distribution, we replicate the
logit model.

f (xiβ) =
ey

∗
i −µi

(1 + ey
∗
i −µi )2
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Threshold models

Alternatively, if f (µi ) is the cumulative standard normal
distribution (σ2 = 1), we have the probit model.

Hence β can now be interpreted as the effect of an increase by 1 in
x on y∗, whereby the unit of y∗ is one standard deviation.

P(yi = 1|β, xi ) = Φ(xiβ),

whereby Φ(x) is the cumulative standard normal distribution (i.e.
the surface between −∞ and x under a normal distribution with
µ = 0 and σ2 = 1).
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Loglikelihood function

Systematic part:
πi = Φ(xiβ),

where Φ(x) is the cumulative standard normal distribution.

Stochastic part:

P(yi = 1) = πyii (1− πi )1−yi

f (y|πi) =
n∏

i=1

πyii (1− πi )1−yi

`(y) =
n∑

i=1

yi log πi +
n∑

i=1

(1− yi ) log(1− πi )
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Exercise

Repeat the previous estimation using probit instead of logit.

1 Plot predicted probabilities with respect to preference for
democracy.

2 Evaluate the predictive performance of this model.

3 Add suitdemoc as a dependent variable to the model. Does
the predictive performance improve?
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Ordered data

Models where the dependent variable is categorical, and the
categories are in a particular order.

We can therefore take a similar latent variable approach.
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Ordered probit

y∗i ∼ N(µi , 1)

µi = xiβ

With the following observation mechanism:

yi = j if τj−1 ≤ y∗i ≤ τj

Or, alternatively, when we use dummy variables for each category:

yij =

{
1 if τj−1 ≤ y∗i ≤ τj
0 otherwise.

Note that there are no lower or upper bounds for the first and last
category, respectively.
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y∗i ∼ N(µi , 1)

µi = xiβ

With the following observation mechanism:
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Ordered probit

yij =

{
1 if τj−1 ≤ y∗i ≤ τj
0 otherwise.

P(yi = j |β, xi ) = Φ(τj − xiβ)− Φ(τj−1 − xiβ)
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Ordered probit

To estimate in R:

library(MASS)

m <- polr(y ~ x1 + x2, method="probit")

To get predicted probabilities:

pnorm(m$zeta[2] - xb) - pnorm(m$zeta[1] - xb)

predict(m, type="probs")
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Loglikelihood function

Assuming yi can take the values 0, 1, 2, ..., p.

P(yi = 0) = Φ(τ1 − xiβ)

P(yi = p) = Φ(xiβ − τp)

P(yi = j |0 < yi < p) = Φ(τj+1 − xiβ)− Φ(τj − xiβ)

`(y) =
∑
yi=0

log(Φ(τ1 − xiβ)) +
∑
yi=p

log(Φ(xiβ − τp))

+
∑

0<yi<p

log(Φ(τj+1 − xiβ)− Φ(τj − xiβ))
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Exercise

Using the asiabaro.dta data set, estimate a model explaining
interest in politics by gender, education, and reliance on fate.

1 Perform t-tests for each of the independent variables.
Use: se <- sqrt(diag(vcov(m)))

2 Check the standard errors of the τ values – are the categories
clearly separated?

3 Calculate the predicted probability for males and females of
the respondent being very interested in politics.

Johan A. Elkink limited dependent variables



Binary
Multiple categories

Count
Survival

Ordinal
Nominal

Multinomial model

Here the dependent variable consists of multiple categories,
without particular order.

A latent variable approach will therefore not work.

The probabilities for a particular case to be in any of those
categories still has to be one.
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Multinomial logit

R function: multinom, in package nnet.

m <- multinom(y ~ x1 + x2)

summary(m)

predict(m, type="probs")
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Multinomial logit

P(yi = j |β, xi ) =


1∑p

k=1 e
xiβk

if j = 1

e
xiβj∑p

k=1 e
xiβk

if j > 1

To get predicted probabilities for a new dataset (X∗) - e.g. one
that is constant on all variables but one:

m <- multinom(y ~ x1 + x2 + x3 + x4)

Xb <- X %*% t(coef(m))

denominator <- 1 - rowSums(exp(Xb))

probs <- exp(Xb) / denominator

baseline <- 1 - rowSums(p)

p <- cbind(baseline, p)
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Loglikelihood function

P(yi = j |β, xi ) =


1∑p

k=1 e
xiβk

if j = 1

e
xiβj∑p

k=1 e
xiβk

if j > 1

`(y) =
n∑

i=1

p∑
j=0

I (yi = j)xiβj − log

 p∑
j=0

exiβj
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Exercise

Using data set asiabaro.dta, selecting only data from Taiwan,
explain party choice by urbanisation, gender, age, and trust in the
police. Estimate a multinomial model and interpret the results.
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Count models

Here the dependent variable is a count (of events).

For example,

The number of conflicts in a particular period

The number of coups d’état in the 1980s

The number of visits to a psychologist for a respondent

Note:

Truncated at zero (no negative outcome possible)

No upper limit

Limited by time, place, or both
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Poisson regression

Stochastic: yi ∼ Poisson(λi )

Systematic: λi = exiβ

Poisson distribution:

f (k , λ) =
λke−λ

k!

Note that there is no parameter for the variance. This leads to
regular underestimation (overdispersion, most common) or
overestimation of the variance (underdispersion).

glm(y ~ x1 + x2 + x3, family=poisson)
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Poisson regression

The exponential of the coefficients can be interpreted in a
multiplicative sense.

E.g. if the coefficient of x1 is 0.012, then e0.012 = 1.012 implies
that an increase of x1 by 1 increases y by 1.2%.
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Estimating overdispersion

The estimated overdispersion of a Poisson model is

1

n − k

n∑
i

(
yi − ŷi
sd(ŷi )

)2 =
1

n − k

n∑
i

(
yi − eXiβ

√
eXiβ

)2,

which has a χ2
n−k distribution.
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Negative binomial

The negative binomial model is useful for overdispersed data:

Stochastic: yi ∼ NegBin(φ, σ2)

Systematic: φ = exiβ = E (yi )

Variance: V (y|X) = φσ2

When σ2 approaches 1, the negative binomial approaches the
Poisson distribution.

library(MASS)

glm.nb(y ~ x1 + x2 + x3)
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Exercise

Open dataset quine which is part of the MASS library in R.

Eth Ethnicity: aboriginal or not
Sex Sex of respondent
Age Age group
Lrn Average or slow learner
Days Days absent from school in a year

Estimate / interpret / check both poisson and negative binomial:
Days ∼ Eth + Sex + Age + Lrn
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Concept

Basic idea is to estimate the duration of something, or the time
until death or failure.
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Survivor function

Say, our dependent variable, y, records length of life, thus a
random variable between 0 and ∞.

The cumulative distribution function of y is F (t) = P(y < t), i.e.
the probability of death before time (younger than) t.

More commonly used is its complement, the probability of death
later (older) than t: S(t) = P(y > t) = 1− P(y < t) = 1− F (t).
The latter is known as the survivor function.

Note that S(0) = 1 and S(∞) = 0, and S(t) decreases
monotonically between 0 and ∞.
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Empirical survivor function

S(t) =
number of observations > t

n
=

1

n

n∑
i

I(t,∞)(yi ),

whereby I(a,b)(x) is an indicator function which is 1 if x is between
a and b, 0 otherwise.
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Hazard function

We have S(t) = P(y > t) = 1− F (t). What we are usually
interested in is the hazard function, the probability of death
“now”, P(t < y < t + ∆t), given survival up until now:
P(t < y < t + ∆t|y > t).

As ∆t goes to 0, this is given by:

h(t) = lim
∆t→0

P(t < y < t + ∆t)

P(y > t)
=

F ′(t)

S(t)
=

f (t)

S(t)
=

f (t)

1− F (t)

Alternative names: force of decrement, force of mortality,
age-specific death (failure) rate, intensity function, hazard function.
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Empirical hazard function

H(t) = − loge S(t)
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If the hazard function shows a straight line, the distribution is
exponential (see below).
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Constant hazard model

The probability of survival is independent of the time of survival
thus far.

h(t) = β

S(t) = e−tβ

The result is an exponential probability model.
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Weibull hazard model

Another typical model is the Weibull specification:

h(t) = γβtβ−1

If β = 1, this reduces to:

h(t) = γ,

which is the exponential model.

If β > 1, the hazard increases monotonically over time; if β < 1,
the hazard decreases monotonically over time.
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Weibull hazard model
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Censoring

Right censoring:

Cases die for other reasons

Cases die outside observed timeframe

Left censoring:

Birth time is unknown

Note that if censoring is not independent of Y , estimates can be
seriously biased.
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Censoring in R

A dependent variable for survival analysis is defined in R by the
function Surv.

Template 1:

Surv(time, event)

Where time refers to the length of time until death and event is 0
when right-censored, 1 when not.

Template 2:

Surv(time, time2, event, type)

Where time is the interval [time, time2], type is “interval” and event
is 0 for right-censored, 1 for normal event, 2 for left-censored, and 3
for both left- and right-censored.
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Censoring in R

A dependent variable for survival analysis is defined in R by the
function Surv.

Template 1:
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Censoring in R

A dependent variable for survival analysis is defined in R by the
function Surv.

Template 1:

Surv(time, event)

Where time refers to the length of time until death and event is 0
when right-censored, 1 when not.

Template 2:

Surv(time, time2, event, type)

Where time is the interval [time, time2], type is “interval” and event
is 0 for right-censored, 1 for normal event, 2 for left-censored, and 3
for both left- and right-censored.
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Proportional hazard model

Generally, we want to estimate survival models with independent,
explanatory variables. The typical structure for this is:

hx(t) = h0(t)g(x) = h0(t)eXβ

h0(t) is called the base hazard.

Note that the relative hazard of two cases is independent of the
base hazard:

hx1(t)

hx2(t)
=

h0(t)g(x1)

h0(t)g(x2)
=

g(x1)

g(x2)
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Proportional hazard model

The base hazard can now have various different distributions, e.g.
exponential.

In R:

summary(survreg(Surv(y,c) ~ x1 + x2 + x3,

data=data, dist="exponential"))

summary(survreg(Surv(y,c) ~ x1 + x2 + x3,

data=data, dist="weibull"))

Note that the coefficients enter multiplicatively, similar to count
models. If βx1 = −0.16, then the multiplicative effect is
e−0.16 = .85, which an increase of x1 by 1 leads to a 15% decrease
in the hazard.
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Cox proportional hazard model

The most commonly used proportional hazard model is
nonparametric, i.e. there is no assumption made about the
distribution of h0.

Using a nonparametric model leads to a slightly less efficient
estimation, but a more generic one.
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Time-varying independent variables

Two types of independent variables in survival analysis can be
distinguished:

Constant over time hX (t) = h0(t)eXβ

Varying over time hX (t) = h0(t)eX(t)β
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Two data formats

Depending on whether there are time varying independent
variables, a survival data set can be in two different formats.

Format 1:

time censored x1 x2

10 1 3 1
14 0 2 0
13 1 5 1
2 1 4 1
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Two data formats

Depending on whether there are time varying independent
variables, a survival data set can be in two different formats.

Format 2:

start end event censored x1 x2

1 2 0 1 3 1
2 3 0 0 2 0
3 4 1 1 5 1
1 2 0 1 3 1
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Example: Recidivism

See for an extensive example, including with time varying variables:

http://cran.r-project.org/doc/contrib/

Fox-Companion/cox-regression.txt
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Competing risks

The competing risks model is a survival model where there are
multiple ways of failure or death, e.g. different causes of death.

In a competing risks model, right censoring can be included simply
as another type of risk.
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Frailty

In some scenarios, one wants to assume that the baseline hazard,
h0(t), varies per individual, or per group of individuals.

E.g. different types of companies might have different risks of
bankruptcy.

A frailty is an extra parameter to a proportional hazard model that
estimates this unit- or group-specific baseline hazard.

hX (t) = αho(t)eXβ = ho(t)eXXβ+log(α),

with typically log(αi ) ∼ N(0, σ2).
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Frailty in R

summary(survreg(Surv(y,c) ~ x1 + x2 + x3 + frailty(id,

distribution="gauss")),

data=data, dist="exponential"))

Whereby distribution can be “gauss” for a normally distributed
frailty term, “gamma” for a gamma distribution, etc.
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Exercise: Taoisigh

Open the taoisigh.dta data file.

1 Estimate a baseline survival model, using an exponential
hazard function, for the duration of cabinets.

2 Extend the model to see whether coalitions have a lower
survival probability.

3 Estimate the model using a proportional hazard function.

4 Estimate the model with a frailty term for party.

5 What do you conclude about the impact of coalitions on the
survival chances of Irish governments?
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