Model Measurement levels

Advanced Quantitative Methods: Limited Dependent Variables

Johan A. Elkink

University College Dublin

1 April 2014

Model Measurement levels

2 Multiple categories

Model Measurement levels

Components

Two components of the model:

 $egin{array}{c|c} \mathbf{y} \sim \mathcal{N}(oldsymbol{\mu},\sigma^2) & ext{Stochastic} \ oldsymbol{\mu} = \mathbf{X}oldsymbol{eta} & ext{Systematic} \end{array}$

Generalised version (not necessarily linear):

 $egin{array}{lll} \mathbf{y} \sim f(oldsymbol{\mu},oldsymbol{lpha}) & | & ext{Stochastic} \ oldsymbol{\mu} = g(\mathbf{X},oldsymbol{eta}) & | & ext{Systematic} \end{array}$

(King 1998, 8)

Model Measurement levels

Components

 $egin{array}{lll} \mathbf{y} \sim f(oldsymbol{\mu},oldsymbol{lpha}) & | & ext{Stochastic} \ oldsymbol{\mu} = g(\mathbf{X},oldsymbol{eta}) & | & ext{Systematic} \end{array}$

Stochastic component: varies over repeated (hypothetical) observations on the same unit.

Systematic component: varies across units, but constant given X.

(King 1998, 8)

Model Measurement levels

Uncertainty

 $egin{array}{lll} \mathbf{y} \sim f(oldsymbol{\mu},oldsymbol{lpha}) & ext{Stochastic} \ oldsymbol{\mu} = g(\mathbf{X},oldsymbol{eta}) & ext{Systematic} \end{array}$

Two types of uncertainty:

Estimation uncertainty: lack of knowledge about α and β ; can be reduced by increasing *n*.

Fundamental uncertainty: represented by stochastic component and exists independent of researcher.

Model Measurement levels

Levels of measurement

	Discreet	Continuous
Nominal	party choice	-
Ordinal		-
		-
Interval		
Ratio		

Categories in no particular order

(examples in cells)

Model Measurement levels

Levels of measurement

	Discreet	Continuous
Nominal	party choice	-
Ordinal	education level	-
		-
Interval		
Ratio		

Categories in a specific order

(examples in cells)

Model Measurement levels

Levels of measurement

	Discreet	Continuous	
Nominal	party choice	-	
Ordinal	education level	-	
		-	
Interval	how likely to vote	temperature	
Ratio			

All values possible

(examples in cells)

Model Measurement levels

Levels of measurement

	Discreet	Continuous	
Nominal	party choice	-	
Ordinal	education level -		
		-	
Interval	how likely to vote	temperature	
Ratio	deaths in war	ideological distance	

All values possible, with a meaningful zero point

(examples in cells)

Model Measurement levels

Levels of measurement

	Discreet	Continuous	
Nominal party choice		-	
Ordinal education level		-	
Binary	turnout	-	
Interval	how likely to vote	temperature	
Ratio	deaths in war	ideological distance	

Two categories, coded as 0 and 1 $\,$

(examples in cells)

Model Measurement levels

Limited dependent variables

When a dependent variable is not continuous, or is truncated for some reason, a linear model would lead to implausible predictions.

E.g. regressing whether someone voted on a set of independent variables will give somewhat reasonable estimates (see previous homework), but using these estimates to calculate predictions leads to **meaningless predictions**.

Model Measurement levels

Limited dependent variables

When a dependent variable is not continuous, or is truncated for some reason, a linear model would lead to implausible predictions.

E.g. regressing whether someone voted on a set of independent variables will give somewhat reasonable estimates (see previous homework), but using these estimates to calculate predictions leads to **meaningless predictions**.

Furthermore, estimating limited dependent variable data with a linear model implies serious **heteroscedasticity**.

Binary

Multiple categories Count Survival Logistic regression Interpretation Probit regression

Outline

2 Multiple categories

3 Count

Logistic regression Interpretation Probit regression

Binary models

Binary models have a dependent variable consisting of two categories.

For example,

- Vote on a particular law
- Turning out in an election
- Approval in a referendum
- Bankrupt or not

Logistic regression Interpretation Probit regression

Logistic regression

Stochastic:

$$y_i = Bernoulli(\pi_i) = \pi_i^{y_i}(1-\pi_i)^{1-y_i}$$

Variance of stochastic component:

$$V(y_i) = \pi_i(1-\pi_i)$$

Systematic:

$$\pi_i = g(\mathbf{x}_ieta) = rac{1}{1+e^{-\mathbf{x}_ieta}}$$

Johan A. Elkink

limited dependent variables

Logistic regression Interpretation Probit regression

Logistic distribution

Logistic regression Interpretation Probit regression

Logistic regression

Resulting predictions:

- are bounded between 0 and 1
- show limited effect at extremes
- are a smooth, monotone translation from linear prediction $\mathbf{x}_i \boldsymbol{\beta}$

Logistic regression Interpretation Probit regression

Loglikelihood function

Systematic part:

$$\pi_i = \frac{1}{1 + e^{-\mathbf{x}_i \boldsymbol{\beta}}}$$

Stochastic part:

$$P(y_i = 1) = \pi_i^{y_i} (1 - \pi_i)^{1 - y_i}$$

$$f(\mathbf{y}|\pi_i) = \prod_{i=1}^n \pi_i^{y_i} (1 - \pi_i)^{1 - y_i}$$

$$\ell(\mathbf{y}) = \log \prod_{i=1}^n \pi_i^{y_i} (1 - \pi_i)^{1 - y_i}$$

$$= \sum_{i=1}^n y_i \log \pi_i + \sum_{i=1}^n (1 - y_i) \log(1 - \pi_i)$$

Johan A. Elkink

limited dependent variables

Logistic regression Interpretation Probit regression

Exercise

Using the asiabaro.dta data set, estimate a logistic regression explaining abstention in elections by trust in the government, satisfaction with democracy, gender, urbanisation, and preference for democracy.

Logistic regression Interpretation Probit regression

Graphical interpretation

Because of the nonlinear relation between $\mathbf{x}_i \boldsymbol{\beta}$ and \mathbf{y}_i , additional tools can aid the interpretation of the size of an effect beyond just looking at $\hat{\boldsymbol{\beta}}$.

One method is to plot the relationship between one x and π , holding the other values of X constant (e.g. at the mean, median, etc.).

Because the **link function** $g(X\beta)$ is not linear (but instead $g(X\beta) = \frac{1}{1+e^{-X\beta}}$), the effect of X on y depends on all X.

Logistic regression Interpretation Probit regression

Graphical: example

Johan A. Elkink limited dependent variables

Logistic regression Interpretation Probit regression

Fitted values

A second useful way of interpreting **logit** regression coefficients is by describing typical cases or interesting examples.

Party	Amount	P(Vote = 1)	95% C.I.
Republican	\$10000	.83	[.69,.95]
Democrat	\$10000	.44	[.27,.65]
Republican	\$20000	.93	[.84,.99]
Democrat	\$20000	.69	[.44,.95]

Logistic regression Interpretation Probit regression

First differences

Basic idea is to calculate and present:

$$\Delta_{\hat{\pi}} = g(\mathbf{X}eta) - g(\mathbf{X}^*eta),$$

whereby \mathbf{X}^* differs only in one variable from \mathbf{X} .

Variable	Values	Diff	95% C.I.
Party	Rep, Dem	34	[53,11]
Amount	\$10000, \$20000	.11	[.03,.20]

Logistic regression Interpretation Probit regression

Derivatives

$$rac{\partial \hat{\pi}}{\partial {f x}_j} = eta_j \hat{\pi} (1 - \hat{\pi})$$

Hence a quick method to interpret logit coefficients is to divide them by 4 to get the slope at $\hat{\pi} = 0.5$.

Logistic regression Interpretation Probit regression

Presentation

Bottom line: it is much better to present *interpretable and understandable* inferences, with an indication of the level of *uncertainty*, than to present simply estimated coefficients.

Logistic regression Interpretation Probit regression

Presentation

E.g. "An increase in automobile support for a Republican senator from \$10000 to \$20000 in total increases his or her probability to vote for the Corporate Average Fuel Economy standard bill by 11%, give or take 7%, all else equal."

Logistic regression Interpretation Probit regression

Confusion matrix

Evaluating the performance of the binary model can be done by using the **confusion matrix**:

		True		
		1	0	
diction	1	True positive (TP)	False positive (FP)	
Pre	0	False negative (TN)	True negative (FN)	

Logistic regression Interpretation Probit regression

Confusion matrix

Evaluating the performance of the binary model can be done by using the **confusion matrix**:

		True		
		1	0	
ction	1	True positive (TP)	False positive (FP)	Precision: $\frac{TP}{TP+FP}$
Predi	0	False negative (TN)	True negative (FN)	
		Sensitivity: $\frac{TP}{TP+FN}$	Specificity: TN FP+TN	

Logistic regression Interpretation Probit regression

Receiver Operating Characteristic curve

The accuracy of predictions will depend on the threshold probability – variations on default of $\hat{\pi} = 0.5$ are possible.

Depending on the application, it might be better or worse to overor underestimate ones relative to zeros.

The ROC-curve plots, for all possible thresholds, the true positive rate against the false positive rate.

An ROC-curve closer to the 45 degree line indicates a better predictive performance; any predictions under this line indicate worse than random prediction.

Logistic regression Interpretation Probit regression

Area Under Curve (AUC)

Given the above, we can also calculate the area under the ROC-curve as a measure of prediction quality. This is somewhat related to the Gini coefficient for income distributions (G = 2AUC - 1).

An extensive example in R can be found at http://www.joselkink.net/pub/ROC-example.html.

Logistic regression Interpretation Probit regression

Exercise

Using the logistic previous logistic regression:

- (1) What is the slope of the regression line with respect to preference for democracy at $\hat{\pi} = .5$?
- 2 Calculate predicted differences for urban vs rural respondent.
- ③ Calculate first differences for urban vs rural and female vs male.
- Plot predicted probabilities as a function of preference for democracy.
- S Calculate the AUC score for this model.

Logistic regression Interpretation Probit regression

Threshold models

Imagine we have a latent, unobserved variable:

 $\mathbf{y}^* \sim f(oldsymbol{\mu}) \ oldsymbol{\mu} = \mathbf{X}oldsymbol{eta}$

With the following observation mechanism:

$$y_i = \begin{cases} 1 & \text{if } y_i^* > 0 \\ 0 & \text{if } y_i^* \le 0. \end{cases}$$

Logistic regression Interpretation Probit regression

Threshold models

If $f(\mu_i)$ is the **standardised logistic distribution**, we replicate the logit model.

$$f(\mathbf{x}_ieta) = rac{e^{y_i^*-\mu_i}}{(1+e^{y_i^*-\mu_i})^2}$$

Logistic regression Interpretation Probit regression

Threshold models

Alternatively, if $f(\mu_i)$ is the cumulative standard normal distribution ($\sigma^2 = 1$), we have the probit model.

Hence β can now be interpreted as the effect of an increase by 1 in **x** on **y**^{*}, whereby the unit of **y**^{*} is one standard deviation.

$$P(y_i = 1 | \boldsymbol{\beta}, \mathbf{x}_i) = \Phi(\mathbf{x}_i \boldsymbol{\beta}),$$

whereby $\Phi(x)$ is the cumulative standard normal distribution (i.e. the surface between $-\infty$ and x under a normal distribution with $\mu = 0$ and $\sigma^2 = 1$).

Binary

Multiple categories Count Survival Logistic regression Interpretation Probit regression

Threshold models

Logistic regression Interpretation Probit regression

Loglikelihood function

Systematic part:

$$\pi_i = \Phi(\mathbf{x}_i \boldsymbol{\beta}),$$

where $\Phi(x)$ is the **cumulative standard normal distribution**.

Stochastic part:

$$P(y_i = 1) = \pi_i^{y_i} (1 - \pi_i)^{1 - y_i}$$

$$f(\mathbf{y}|\pi_i) = \prod_{i=1}^n \pi_i^{y_i} (1 - \pi_i)^{1 - y_i}$$

$$\ell(\mathbf{y}) = \sum_{i=1}^n y_i \log \pi_i + \sum_{i=1}^n (1 - y_i) \log(1 - \pi_i)$$
Logistic regression Interpretation Probit regression

Exercise

Repeat the previous estimation using probit instead of logit.

- Plot predicted probabilities with respect to preference for democracy.
- 2 Evaluate the predictive performance of this model.
- 3 Add suitdemoc as a dependent variable to the model. Does the predictive performance improve?

Ordinal Nominal

Outline

2 Multiple categories

Ordinal Nominal

Ordered data

Models where the dependent variable is categorical, and the categories are in a particular order.

We can therefore take a similar latent variable approach.

Ordinal Nominal

Ordered probit

$$y_i^* \sim N(\mu_i, 1)$$

 $\mu_i = \mathbf{x}_i \boldsymbol{eta}$

With the following observation mechanism:

$$y_i = j$$
 if $\tau_{j-1} \le y_i^* \le \tau_j$

Ordinal Nominal

Ordered probit

$$y_i^* \sim N(\mu_i, 1)$$

 $\mu_i = \mathbf{x}_i \boldsymbol{eta}$

With the following observation mechanism:

$$y_i = j$$
 if $\tau_{j-1} \leq y_i^* \leq \tau_j$

Or, alternatively, when we use dummy variables for each category:

$$y_{ij} = egin{cases} 1 & ext{if} & au_{j-1} \leq y^*_i \leq au_j \ 0 & ext{otherwise}. \end{cases}$$

Note that there are no lower or upper bounds for the first and last category, respectively.

Ordinal Nominal

Ordered probit

$$y_{ij} = egin{cases} 1 & ext{if} & au_{j-1} \leq y_i^* \leq au_j \ 0 & ext{otherwise.} \end{cases}$$

$$P(y_i = j | \beta, \mathbf{x}_i) = \Phi(\tau_j - \mathbf{x}_i \beta) - \Phi(\tau_{j-1} - \mathbf{x}_i \beta)$$

Ordinal Nominal

Ordered probit

Ordinal Nominal

Ordered probit

To estimate in R:

library(MASS)
m <- polr(y ~ x1 + x2, method="probit")</pre>

Ordinal Nominal

Ordered probit

To estimate in R:

```
library(MASS)
m <- polr(y ~ x1 + x2, method="probit")</pre>
```

To get predicted probabilities:

```
pnorm(m$zeta[2] - xb) - pnorm(m$zeta[1] - xb)
predict(m, type="probs")
```

Ordinal Nominal

Loglikelihood function

Assuming y_i can take the values 0, 1, 2, ..., p.

$$P(y_i = 0) = \Phi(\tau_1 - \mathbf{x}_i\beta)$$

$$P(y_i = p) = \Phi(\mathbf{x}_i\beta - \tau_p)$$

$$P(y_i = j|0 < y_i < p) = \Phi(\tau_{j+1} - \mathbf{x}_i\beta) - \Phi(\tau_j - \mathbf{x}_i\beta)$$

$$egin{aligned} \ell(\mathbf{y}) &= \sum_{y_i=0} \log(\Phi(au_1 - \mathbf{x}_ieta)) + \sum_{y_i=
ho} \log(\Phi(\mathbf{x}_ieta - au_{
ho})) \ &+ \sum_{0 < y_i <
ho} \log(\Phi(au_{j+1} - \mathbf{x}_ieta) - \Phi(au_j - \mathbf{x}_ieta)) \end{aligned}$$

Ordinal Nominal

Exercise

Using the asiabaro.dta data set, estimate a model explaining interest in politics by gender, education, and reliance on fate.

- Perform t-tests for each of the independent variables. Use: se <- sqrt(diag(vcov(m)))</p>
- 2 Check the standard errors of the τ values are the categories clearly separated?
- 3 Calculate the predicted probability for males and females of the respondent being very interested in politics.

Ordinal Nominal

Multinomial model

Here the dependent variable consists of multiple categories, without particular order.

A latent variable approach will therefore not work.

The probabilities for a particular case to be in any of those categories still has to be one.

Ordinal Nominal

Multinomial logit

R function: multinom, in package nnet.

```
m <- multinom(y ~ x1 + x2)
summary(m)</pre>
```

```
predict(m, type="probs")
```

Ordinal Nominal

Multinomial logit

$$P(y_i = j | \beta, \mathbf{x}_i) = \begin{cases} \frac{1}{\sum_{k=1}^{p} e^{\mathbf{x}_i \beta_k}} & \text{if} \quad j = 1\\ \frac{e^{\mathbf{x}_i \beta_j}}{\sum_{k=1}^{p} e^{\mathbf{x}_i \beta_k}} & \text{if} \quad j > 1 \end{cases}$$

Ordinal Nominal

Multinomial logit

$$P(y_i = j | \beta, \mathbf{x}_i) = \begin{cases} \frac{1}{\sum_{k=1}^{p} e^{\mathbf{x}_i \beta_k}} & \text{if } j = 1\\ \frac{e^{\mathbf{x}_i \beta_j}}{\sum_{k=1}^{p} e^{\mathbf{x}_i \beta_k}} & \text{if } j > 1 \end{cases}$$

To get predicted probabilities for a new dataset (X^*) - e.g. one that is constant on all variables but one:

```
m <- multinom(y ~ x1 + x2 + x3 + x4)
Xb <- X %*% t(coef(m))
denominator <- 1 - rowSums(exp(Xb))
probs <- exp(Xb) / denominator
baseline <- 1 - rowSums(p)
p <- cbind(baseline, p)</pre>
```

Ordinal Nominal

Loglikelihood function

$$P(y_i = j | \beta, \mathbf{x}_i) = \begin{cases} \frac{1}{\sum_{k=1}^{p} e^{\mathbf{x}_i \beta_k}} & \text{if } j = 1\\ \frac{e^{\mathbf{x}_i \beta_j}}{\sum_{k=1}^{p} e^{\mathbf{x}_i \beta_k}} & \text{if } j > 1 \end{cases}$$

$$\ell(\mathbf{y}) = \sum_{i=1}^{n} \sum_{j=0}^{p} \left[I(y_i = j) \mathbf{x}_i \beta_j - \log \left(\sum_{j=0}^{p} e^{\mathbf{x}_i \beta_j} \right) \right]$$

Ordinal Nominal

Exercise

Using data set asiabaro.dta, selecting only data from Taiwan, explain party choice by urbanisation, gender, age, and trust in the police. Estimate a multinomial model and interpret the results.

Poisson Negative binomial

Outline

2 Multiple categories

Poisson Negative binomial

Count models

Here the dependent variable is a count (of events).

For example,

- The number of conflicts in a particular period
- The number of coups d'état in the 1980s
- The number of visits to a psychologist for a respondent

Poisson Negative binomial

Count models

Here the dependent variable is a count (of events).

For example,

- The number of conflicts in a particular period
- The number of coups d'état in the 1980s
- The number of visits to a psychologist for a respondent

Note:

• Truncated at zero (no negative outcome possible)

Poisson Negative binomial

Count models

Here the dependent variable is a count (of events).

For example,

- The number of conflicts in a particular period
- The number of coups d'état in the 1980s
- The number of visits to a psychologist for a respondent

Note:

- Truncated at zero (no negative outcome possible)
- No upper limit

Poisson Negative binomial

Count models

Here the dependent variable is a count (of events).

For example,

- The number of conflicts in a particular period
- The number of coups d'état in the 1980s
- The number of visits to a psychologist for a respondent

Note:

- Truncated at zero (no negative outcome possible)
- No upper limit
- Limited by time, place, or both

Poisson Negative binomial

Poisson regression

Stochastic: $y_i \sim Poisson(\lambda_i)$

Systematic: $\lambda_i = e^{\mathbf{x}_i \boldsymbol{\beta}}$

Poisson distribution:

$$f(k,\lambda) = \frac{\lambda^k e^{-\lambda}}{k!}$$

Note that there is no parameter for the variance. This leads to regular underestimation (**overdispersion**, most common) or overestimation of the variance (**underdispersion**).

glm(y ~ x1 + x2 + x3, family=poisson)

Poisson Negative binomial

The exponential of the coefficients can be interpreted in a multiplicative sense.

E.g. if the coefficient of \mathbf{x}_1 is 0.012, then $e^{0.012} = 1.012$ implies that an increase of \mathbf{x}_1 by 1 increases \mathbf{y} by 1.2%.

Poisson Negative binomial

Estimating overdispersion

The estimated overdispersion of a Poisson model is

$$\frac{1}{n-k}\sum_{i}^{n}(\frac{y_{i}-\hat{y}_{i}}{sd(\hat{y}_{i})})^{2}=\frac{1}{n-k}\sum_{i}^{n}(\frac{y_{i}-e^{X_{i}\beta}}{\sqrt{e^{X_{i}\beta}}})^{2},$$

which has a χ^2_{n-k} distribution.

Poisson Negative binomial

Negative binomial

The negative binomial model is useful for overdispersed data:

Stochastic: $y_i \sim NegBin(\phi, \sigma^2)$

Systematic: $\phi = e^{\mathbf{x}_i \boldsymbol{\beta}} = E(y_i)$

Variance:
$$V(\mathbf{y}|\mathbf{X}) = \phi \sigma^2$$

When σ^2 approaches 1, the negative binomial approaches the Poisson distribution.

```
library(MASS)
glm.nb(y ~ x1 + x2 + x3)
```

Poisson Negative binomial

Exercise

Open dataset quine which is part of the MASS library in R.

- Eth | Ethnicity: aboriginal or not
- **Sex** Sex of respondent
- Age | Age group
- Lrn Average or slow learner
- Days | Days absent from school in a year

Estimate / interpret / check both poisson and negative binomial: $Days \sim Eth + Sex + Age + Lrn$

Model Variations

Outline

2 Multiple categories

3 Count

Model Variations

Concept

Basic idea is to estimate the duration of something, or the time until death or failure.

Model Variations

Survivor function

Say, our dependent variable, $\boldsymbol{y},$ records length of life, thus a random variable between 0 and $\infty.$

The cumulative distribution function of **y** is $F(t) = P(\mathbf{y} < t)$, i.e. the probability of death before time (younger than) t.

More commonly used is its complement, the probability of death later (older) than t: $S(t) = P(\mathbf{y} > t) = 1 - P(\mathbf{y} < t) = 1 - F(t)$. The latter is known as the **survivor function**.

Note that S(0) = 1 and $S(\infty) = 0$, and S(t) decreases monotonically between 0 and ∞ .

Model Variations

Empirical survivor function

$$S(t) = rac{\text{number of observations} > t}{n} = rac{1}{n} \sum_{i}^{n} I_{(t,\infty)}(y_i),$$

whereby $I_{(a,b)}(x)$ is an indicator function which is 1 if x is between a and b, 0 otherwise.

Model Variations

Hazard function

We have $S(t) = P(\mathbf{y} > t) = 1 - F(t)$. What we are usually interested in is the **hazard function**, the probability of death "now", $P(t < \mathbf{y} < t + \Delta t)$, given survival up until now: $P(t < \mathbf{y} < t + \Delta t|\mathbf{y} > t)$.

As Δt goes to 0, this is given by:

$$h(t) = \lim_{\Delta t \to 0} \frac{P(t < \mathbf{y} < t + \Delta t)}{P(\mathbf{y} > t)} = \frac{F'(t)}{S(t)} = \frac{f(t)}{S(t)} = \frac{f(t)}{1 - F(t)}$$

Alternative names: force of decrement, force of mortality, age-specific death (failure) rate, intensity function, hazard function.

Model Variations

Empirical hazard function

 $H(t) = -\log_e S(t)$

Empirical hazard function, Irish Taoisigh

Model Variations

Constant hazard model

The probability of survival is independent of the time of survival thus far.

 $h(t) = \beta$

 $S(t) = e^{-t\beta}$

The result is an exponential probability model.

Model Variations

Weibull hazard model

Another typical model is the Weibull specification:

$$h(t) = \gamma \beta t^{\beta-1}$$

If $\beta = 1$, this reduces to:

$$h(t)=\gamma,$$

which is the exponential model.

If $\beta > 1$, the hazard increases monotonically over time; if $\beta < 1$, the hazard decreases monotonically over time.

Model Variations

Weibull hazard model

Johan A. Elkink limited dependent variables
Model Variations

Censoring

Right censoring:

- Cases die for other reasons
- Cases die outside observed timeframe

Left censoring:

• Birth time is unknown

Note that if censoring is not independent of Y, estimates can be seriously biased.

Model Variations

Censoring in R

A dependent variable for survival analysis is defined in R by the function Surv.

Model Variations

Censoring in ${\sf R}$

A dependent variable for survival analysis is defined in R by the function Surv.

Template 1:

Surv(time, event)

Where *time* refers to the length of time until death and *event* is 0 when right-censored, 1 when not.

Model Variations

Censoring in R

A dependent variable for survival analysis is defined in R by the function Surv.

Template 1:

Surv(time, event)

Where *time* refers to the length of time until death and *event* is 0 when right-censored, 1 when not.

Template 2:

```
Surv(time, time2, event, type)
```

Where time is the interval [*time*, *time2*], *type* is "interval" and *event* is 0 for right-censored, 1 for normal event, 2 for left-censored, and 3 for both left- and right-censored.

Johan A. Elkink limited dependent variables

Model Variations

Proportional hazard model

Generally, we want to estimate survival models with independent, explanatory variables. The typical structure for this is:

$$h_{\scriptscriptstyle X}(t) = h_0(t)g(x) = h_0(t)e^{{f X}eta}$$

$h_0(t)$ is called the **base hazard**.

Note that the relative hazard of two cases is independent of the base hazard:

$$rac{h_{x_1}(t)}{h_{x_2}(t)} = rac{h_0(t)g(x_1)}{h_0(t)g(x_2)} = rac{g(x_1)}{g(x_2)}$$

Model Variations

Proportional hazard model

The base hazard can now have various different distributions, e.g. exponential.

In R:

Note that the coefficients enter multiplicatively, similar to count models. If $\beta_{\mathbf{x}_1} = -0.16$, then the multiplicative effect is $e^{-0.16} = .85$, which an increase of \mathbf{x}_1 by 1 leads to a 15% decrease in the hazard.

Johan A. Elkink limited dependent variables

Model Variations

Cox proportional hazard model

The most commonly used proportional hazard model is **nonparametric**, i.e. there is no assumption made about the distribution of h_0 .

Using a nonparametric model leads to a slightly less efficient estimation, but a more generic one.

Model Variations

Time-varying independent variables

Two types of independent variables in survival analysis can be distinguished:

- Constant over time $h_X(t) = h_0(t)e^{\mathbf{X}\boldsymbol{\beta}}$
- Varying over time $h_X(t) = h_0(t)e^{\mathbf{X}(t)\beta}$

Model Variations

Two data formats

Depending on whether there are time varying independent variables, a survival data set can be in two different formats.

	time censored		x_1	<i>x</i> ₂
Format 1:	10	1	3	1
	14	0	2	0
	13	1	5	1
	2	1	4	1

Model Variations

Two data formats

Depending on whether there are time varying independent variables, a survival data set can be in two different formats.

	start	end	event	censored	x_1	<i>x</i> ₂
	1	2	0	1	3	1
Format 2:	2	3	0	0	2	0
	3	4	1	1	5	1
	1	2	0	1	3	1

Model Variations

Example: Recidivism

See for an extensive example, including with time varying variables:

http://cran.r-project.org/doc/contrib/ Fox-Companion/cox-regression.txt

Model Variations

The competing risks model is a survival model where there are multiple ways of failure or death, e.g. different causes of death.

In a competing risks model, right censoring can be included simply as another type of risk.

Model Variations

Frailty

In some scenarios, one wants to assume that the baseline hazard, $h_0(t)$, varies per individual, or per group of individuals.

E.g. different types of companies might have different risks of bankruptcy.

A frailty is an extra parameter to a proportional hazard model that estimates this unit- or group-specific baseline hazard.

$$h_X(t) = \alpha h_o(t) e^{\mathbf{X} \boldsymbol{\beta}} = h_o(t) e^{X \mathbf{X} \boldsymbol{\beta} + \log(\alpha)},$$

with typically $log(\alpha_i) \sim N(0, \sigma^2)$.

Model Variations

Frailty in R

Whereby distribution can be "gauss" for a normally distributed frailty term, "gamma" for a gamma distribution, etc.

Model Variations

Exercise: Taoisigh

Open the taoisigh.dta data file.

- Estimate a baseline survival model, using an exponential hazard function, for the duration of cabinets.
- ② Extend the model to see whether coalitions have a lower survival probability.
- 3 Estimate the model using a proportional hazard function.
- ④ Estimate the model with a frailty term for party.
- S What do you conclude about the impact of coalitions on the survival chances of Irish governments?